A wildfires vulnerability model for Guanacaste Conservation Area, Costa Rica

A wildfires vulnerability model for Guanacaste Conservation Area, Costa Rica

Authors

  • Daniela Vargas-Sanabria Universidad Estatal a Distancia
  • Carlos Campos-Vargas Universidad Estatal a Distancia

DOI:

https://doi.org/10.22458/urj.v10i2.2173

Keywords:

vulnerability, wildfires, tropical dry forest, risk, geographic information systems, Guanacaste Conservation Area.

Abstract

Wildfires occur in almost every type of ecosystem. However, vulnerability and propagation capacity of wildfires mostly relies on the amount of biomass and their water content. Particularly, Tropical dry forests are a vulnerable ecosystem to wildfires because, have at least six months with a precipitation of less than ten mm per month. Vulnerability assessment is a critical tool on wildfires management, defining the most vulnerable areas within the conservation area.The objective of this study was the implementation of a wildfire vulnerability model to identify priority areas for control and management of fire at Guanacaste Conservation Area (ACG). This model was designed integrating ecological components such as visual quality and biodiversity; and socio-economic components such as infrastructure and ecosystems services provided by ACG. Our results indicated that the most vulnerable areas at ACG contains a high density of species with pivotal ecological roles on ecosystem services. On the other hand, the less vulnerable areas are close to roads and communities. However, those last frequently experience wildfires. We expect that this model can be adapted in other protected wild areas with similar ecological and socio-economic characteristics to ACG and are often affected by wildfires taking into consideration the particularities present in each site.

References

Arroyo-Mora; J. P.; Sánchez-Azofeifa; G. A.; Kalacska; M. E. R.; Rivard; B.; Calvo-Alvarado; J.; & Janzen; D. H. (2005). Secondary Forest Detection in a Neotropical Dry Forest Landscape Using Landsat 7 ETM + and IKONOS Imagery. Biotropica; 37 (4); 497–507. doi:10.1111/j. 1744-7429.2005.00068

Birot; Y. (Ed.). (2009). Convivir con los incendios forestales: lo que nos revela la ciencia. Torikatu: European Forest Institute.

Bowman; D. M. J. S.; Balch; J. K.; Artaxo; P.; Bond; W. J.; Carlson; J. M.; Cochrane; M. A.; & Pyne; S. J. (2009). Fire in the earth system. Science; 324(5926); 481–484. doi:10.1126/science.1163886

Calvo-Alvarado; J.; Sánchez-Azofeifa; A.; & Portillo-Quintero; C. (2013). Neotropical Seasonally Dry Forests. Encyclopedia of Biodiversity; 5; 488–500. doi: 10.1016/B978-0-12-384719-5.00354-3

Chuvieco; E.; Martinez; S.; Roman; M. V.; Hantson; S.; & Pettinari; M. L. (2014a). Integration of ecological and socio-economic factors to assess global vulnerability to wildfire. Global Ecology and Biogeography; 23(2); 245–258. doi:10.1111/geb.12095

Chuvieco; E.; Aguado; I.; Jurdao; S.; Pettinari; M. L.; Yebra; M.; Salas; J.; Hantson; S.; de la Riva; J.; Ibarra; P.; Rodrigues; M.; Echeverría; M.; Azqueta; D.; Román; M. V.; Bastarrika; A.; Martínez; S.; Recondo; C.; Zapico; E.; & Martínez-Vega; F. J. (2014b). Integrating geospatial information into fire risk assessment. International Journal of Wildland Fires; 23; 606-619. doi: 10.1071/WF12052

Cochrane; M. A.; Alencar; A.; Schulze; M. D.; Souza; C. M.; Nepstad; D. C.; Lefebvre; P.; & Davidson; E. A. (1999). Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science; 284(5421); 1832–1835. doi:10.1126/science.284.5421.1832

Cochrane; M. A. (2001). Fire in Evergren and Tropical. Conservation Biology; 15(6); 1515–1521.

Cochrane; M. A. (2003). Fire Science for rainforest. Nature; 421; 913-919.

Díaz; A. (2003). Instrumentos para la planificación integral del uso de la tierra con sistemas de información geográfica- un caso de estudio en Argentina. Recuperado de http://edoc.hu-berlin.de/dissertationen/diaz-lacava-amalia-nahir-2003-07-16/PDF/Diaz-Lacava.pdf.

Elvidge; C. D.; Hobson; V. R.; Baugh; K. E.; Dietz; J. B.; Shimabukuro; Y. E.; Krug; T.; & Echavarria; F. R. (2001). DMSP-OLS estimation of tropical forest area impacted by surface fires in Roraima; Brazil: 1995 versus 1998. International Journal of Remote Sensing; 22(14); 2661–2673. doi:10.1080/01431160120888

Fernández; I.; Morales; N.; Olivares; L.; Salvatierra; J.; Gómez; M.; & Montenegro; G. (2010). Restauración ecológica para ecosistemas nativos afectados por incendios forestales. Pontificia Universidad Católica de Chile. Santiago. Chile.

Guariguata; M. R.; & Ostertag; R. (2001). Neotropica secondary forest succesion: changes in structural and functional characteristics. Forest Ecology and Management; 148; 185-206.

Imbach; P.; Coto; O.; & Salinas; Z. (2005). Valoración de los residuos biomásicos en Costa Rica usando Sistemas de Información Geográfica. CATIE. Turrialba; Costa Rica.

Janzen; D. H. (2000). Costa Rica´s Area de Conservación Guanacaste: A long march to survival through non-damaging biodevelopment. Biodiversity; 1(2); 7-20. doi:10.1080/14888386.2000.9712501.

Hilje; B.; Calvo-Alvarado; J.; Jiménez-Rodríguez; C.; & Sánchez-Azofeifa; A. (2015). Tree Species Composition; Breeding Systems; and Pollination and Dispersal Syndromes in Three Forest Successional Stages in a Tropical Dry Forest in Mesoamerica. Tropical Conservation Science; 8(1); 76–94. doi:10.1177/194008291500800109

Leiva; J.; Mata; R.; Rocha; O.; & Gutiérrez; M. (2009). Cronología de la regeneración del bosque tropical seco en Santa Rosa; Guanacaste; Costa Rica. I. Características Edáficas. Revista de biología tropical; 57(3); 801-815.

Li; W.; Campos-Vargas; C.; Marzahn; P.; & Sanchez-Azofeifa; A. (2018). “On the Estimation of Tree Mortality and Liana Infestation Using a Deep Self-Encoding Network.” International Journal of Applied Earth Observation and Geoinformation; 73(May); 1–13. doi:10.1016/j.jag.2018.05.025

Li; W.; Campos-Vargas; C.; Marzahn; P.; & Sanchez-Azofeifa; A. (2017). “Identifying Tropical Dry Forests Extent and Succession via the Use of Machine Learning Techniques.” International Journal of Applied Earth Observation and Geoinformation; 63(July);196–205. doi:10.1016/j.jag.2017.08.003

Martínez; R.; & Rodríguez; D. (Abril de 2008). Los incendios forestales en México y América Central. Memorias del Segundo Simposio Internacional Sobre Políticas; Planificación y Economía de los Programas de Protección Contra Incendios Forestales: Una Visión Global. Córdoba; España. Recuperado de http://www.fs.fed.us/psw/publications/documents/psw_gtr208es/psw_gtr208es_767-780_dominquez.pdf

Meyn; A.; White; P. S.; Buhk; C.; & Jentsch; A. (2007). Environmental drivers of large; infrequent wildfires: The emerging conceptual model. Progress in Physical Geography; 31(3); 287–312. doi:10.1177/0309133307079365

Mondal; N.; & Sukumar; R. (2016). Fires in seasonally dry tropical forest: Testing the varying constraints hypothesis across a regional rainfall gradient. PLoS ONE; 11(7); 1–16. doi:10.1371/journal.pone.0159691

Myers; R.L. (2006). Convivir con el fuego –Manteniendo los ecosistemas y los medios de subsistencia mediante el manejo de integral del fuego. Iniciativa global para el manejo del fuego. Florida: The Nature Conservancy.

Otterstrom; S.; Schwartz; M.; & Velázquez-Rocha; I. (2006). Responses to Fire in Selected Tropical Dry Forest Trees. Biotropica; 38(5); 592–598. Recuperado de: http://onlinelibrary.wiley.com/doi/10.1111/j.1744-7429.2006.00188.x/full

Portillo-Quintero; C. A.; & Sanchez-Azofeifa; G. A. (2010). Extent and conservation of tropical dry forests in the Americas. Biological Conservation; 143(1); 144–155. doi:10.1016/j.biocon.2009.09.020

Sánchez-Azofeifa; A.; Calvo-Alvarado; J.; Marcos do Espírito-Santo; M.; Fernandes; G.; & Powers; J. (2013). Tropical Dry Forests in the Americas. Tropical Dry Forests in the Americas; 1–15. doi:10.1201/b15417-2

Sánchez-Azofeifa; G.A.; Guzmán-Quesada; J. A.; Vega-Araya; M.; Campos-Vargas; C.; Durán; S.M.; D´Souza; W.; Gianoli; T.; Portillo-Quintero; C.; & Sharp; I. (2017). Can terrestrial laser scanners (TLSs) and hemispherical photographs predict tropical dry forest succession with liana abundance?. Biogeosciences; 14; 977-988. doi: 10.5194/bg-14-977-2017

Schmerbeck; J. (2011). Linking dynamics and locally important ecosystem services of South Indian dry forests: an approach. Journal of Resources; Energy and Development; 8(2); 149–172. Recuperado de http://www.indianjournals.com/ijor.aspx?target=ijor:read&volume=8&issue=2&article=007

Ulate Quesada; C. (2011). Análisis y comparación de la biomasa aérea de la cobertura forestal según zona de vida y tipo de bosque para Costa Rica. (Tesis de licenciatura). Instituto Tecnológico de Costa Rica. Cartago; Costa Rica.

Van Bloem; S.; Murphy; P.; & Lugo; A. (2004). Tropical dry forests. Encyclopedia of Forest Sciences; 24(1); 1767–1775. doi:10.1016/B0-12-145160-7/00176-9

Vargas-Sanabria; D. (2016). Dinámica del paisaje en áreas afectadas por incendios forestales en el bosque tropical seco del Área de Conservación Guanacaste; Costa Rica. (Tesis de licenciatura). Universidad Estatal a Distancia. San José; Costa Rica.

Vargas-Sanabria; D.; & Campos- Vargas; C. (2018). Sistema multi-algoritmo para la clasificación de coberturas de la tierra en el bosque seco tropical del Área de Conservación Guanacaste. Tecnología en Marcha. 31 (1); 58-69. doi:10.18845/tm. v31i1.3497

Published

2018-09-21

How to Cite

Vargas-Sanabria, D., & Campos-Vargas, C. (2018). A wildfires vulnerability model for Guanacaste Conservation Area, Costa Rica. UNED Research Journal, 10(2), 435–446. https://doi.org/10.22458/urj.v10i2.2173

Issue

Section

Articles
Loading...