Phenolic resin derived from Jatropha curcas seed-husk lignin as phenol substitute

Phenolic resin derived from Jatropha curcas seed-husk lignin as phenol substitute


  • Carlos Alberto Vega-Aguilar Universidad de Costa Rica
  • Giselle Lutz Universidad de Costa Rica
  • Julio F. Mata-Segreda



Jatropha curcas, lignin, phenolic resin, lignin-formaldehyde resin, physicochemical properties.


Phenolic resin derived from Jatropha curcas seed-husk lignin as phenol substitute. A phenolic resin was made, with a fraction of the phenol content substituted by lignin extracted from Jatropha curcas seed husk. The husk was analysed for chemical composition, finding a high quantity of lignin (47% mass fraction). This lignin was extracted using an alkaline pulping method, followed by precipitation with acid. Several lignin-modified phenolic resins were made, using different lignin contents, in mixtures with formaldehyde in alkaline conditions, and curing at 65 ºC for 6 hours. It was noticed that the lignin substitution percentage affects the resin’s mechanical properties, obtaining better results with a 50% substitution. These resins showed good thermal behaviour, electrical insulation properties and good physical stability against water, acidic solutions and organic solvents, but it lacked on stability against alkaline solutions. It is concluded that there is a good opportunity for using the J. curcas seed husk lignin as partial substitute of phenol in phenolic resins, without sacrificing their physicochemical properties. There is a wide range of possibilities on using J. curcas agro-industrial residues as a renewable feedstock.



Alonso, M. V.; Oliet, M.; Pérez, J.M.; Rodríguez, F. & Echeverría, J. (2004). Determination of curing kinetic parameter of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods. Thermochimica Acta, 419: 161-167. doi: 10.1016/j.tca.2004.02.004

Callister, W.D. & Rethwisch, D.G. (2010). Materials Science and Engineering. An Introduction (8° ed.). Unites States: Springer.

Cheng, K.; Winter, W.T. & Stipanovic, A.J. (2012). A modulated-TGA approach to the kinetics of lignocellulosic biomass pyrolysis/combustion. Polymer Degradation and Stability, 97, 1606-1615. doi: 10.1016/j.polymdegradstab.2012.06.027

Derek, S. (2008). Lignin as a base material for materials applications: Chemistry, application and economics. Industrial Crops & Production, 27: 202-207. doi: 10.1016/j.indcrop.2007.07.008

Effendi, A.; Gerhauser, H. & Bridgwater, A.V. (2008). Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable & Sustainable Energy Reviews, 12: 2092-2116. DOI: 10.1016/j.rser.2007.04.008.

Gabilondo, N.; López, M.; Ramos, J.A.; Echeverría, J.M. & Mondragon, I. (2007). Curing kinetics of amine and sodium hydroxide catalyzed phenol-formaldehyde resins. Journal of Thermal Anaysis And Calorimetry, 90: 229-236. doi: 10.1007/s10973-006-7747-3

Heller, J. (1996). Physic nut. Jatropha curcas. Promoting the conservation and use of underutilized and neglected crops. 1. Roma: Institute of Plant Genetics and Crop Plant Research, Gartersleben, International Plant Genetic Resources Institute.

Ibrahim, M.M.; Agblevor, F.A. & El-Zawawy, W.K. (2010). Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. BioResources, 5(1): 397-418.

Ibrahim, M.N.M.; Zakaria, N.; Sipaut, C.S.; Sulaiman, O. & Hashim, R. (2011). Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydrate Polymers, 86: 112-119. doi: 10.1016/j.carbpol.2011.04.018

Khan, M.A.; Ashraf, S.M. & Malhotra, V.P. (2004). Development and characterization of a wood adhesive using bagasse lignin. International Journal of Adhesion & Adhesives, 24: 485-493. doi: 10.1016/j.ijadhadh.2004.01.003

Kopf, P.W. (2000). Phenolic resins. In Kirk-Othmer encyclopedia of chemical technology (4th ed.) New York: Wiley. DOI: 10.1002/0471238961.1608051411151606.a01

León, S. & Sanabria, F. (1988). Obtención de resinas fenólicas termoestables de lignina extraída del bagazo de la caña de azúcar. Uniciencia, 5(1-2): 47-52.

Makkar, H.P.S.; Becker, K. & Schmook, B. (1998). Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. Plant Foods for Human Nutrition, 52: 31-36.

Mena, K.; Castro, J.A. & Castellón, E. (2012, 10th-11th December). Funcionalización de fibras vegetales con polímeros conductores y partículas magnéticas. In 7° Simposio de Ciencia de Materiales Avanzados y Nanotecnología 2012. San José: Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica.

Mendu, V.; Harman-Ware, A.; Crocker, M.; Jae, J.; Stork, J.; Morton III, S.; Placido, A.; Huber, G. & DeBolt, S. (2011). Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. Biotechnology for Biofuels, 4(43): 1-13. doi: 10.1186/1754-6834-4-43.

Nada, A.M.A.; Abou-Youssef, H. & El-Gohary, S.E.M. (2003). Phenol Formaldehyde Resin Modification with Lignin. Polymer-Plastics Technology and Engineering, 42(4): 689-699. doi: 10.1081/PPT-120023103

OCTAGON, S. A. Biocombustibles. (2007). Jatropha curcas L. Su expansión agrícola para la producción de aceites vegetales con fines de comercialización energética. Guatemala: Alianza en Energía y Ambiente con Centroamérica.

Pérez, J.M.; Rodríguez, F.; Alonso, M.V.; Oliet, M. & Echeverría, J.M. (2007). Characterization of a novolac resin substituting phenol by ammonium lignosulfonate as filler or extender. BioResources, 2: 270-283.

Poljanšek, I. & Krajnc, M. (2005). Characterization of Phenol-Formaldehyde Prepolymer Resins by In Line FT-IR Spectroscopy. Acta Chimica Slovenica, 52: 238-244.

Sarkar, S. & Adhikari, B. (2001). Jute Felt Composite From Lignin Modified Phenolic Resin. Polymer Composites, 22(4): 518-527. doi: 10.1002/pc.10556.

Sotolongo, J. A.; Díaz, A. A. & Montes de Oca, S. (2007). Potencialidades energéticas y medioambientales del árbol Jatropha curcas L. en las condiciones edafoclimáticas de la región semiárida de la provincia de Guantánamo. Tecnología Químicas, 27: 76-82.

Tejado, A.; Peña, C.; Labidi, J.; Echeverria, J.M. & Mondragón, I. (2007). Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresource Technology, 98: 1655-1663. doi: 10.1016/j.biortech.2006.05.042


How to Cite

Vega-Aguilar, C. A., Lutz, G., & Mata-Segreda, J. F. (2015). Phenolic resin derived from Jatropha curcas seed-husk lignin as phenol substitute. UNED Research Journal, 7(2), 217–223.