UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, enero-diciembre 2024 (Publicado 25-I-2024)

 

 

 

Chemical profile of essential oils of the Costa Rican native tree Myrcianthes storkii (Myrtaceae)

 

Carlos Chaverri1,2https://libapps-eu.s3.amazonaws.com/accounts/86186/images/iconoorcid_16x16.gif & José F. Cicció1,2https://libapps-eu.s3.amazonaws.com/accounts/86186/images/iconoorcid_16x16.gif

 

1.        Universidad de Costa Rica, Escuela de Química, 11501-2060 San José, Costa Rica; cachaverri@gmail.com, jfciccio@gmail.com

2.        Universidad de Costa Rica, Centro de Investigaciones en Productos Naturales (CIPRONA), 11501-2060 San José, Costa Rica.

 

Received 10-VII-2023 ● Corrected 08-IX-2023 ● Accepted 11-IX-2023

https://doi.org/10.22458/urj.v16i1.4863

 

ABSTRACT. Introduction: The genus Myrcianthes ranges from southern Florida to Chile, including the Caribbean, and the species Myrcianthes storkii is a shrub or tree found in Costa Rica and western Panama, in wet to very rainy, cloud, and oak forests (altitude 1300-3150m). Objective: To identify the chemical composition of essential oils from leaves, floral buds, and twigs of M. storkii of Costa Rica. Methods: We obtained the essential oils through hydrodistillation in a Clevenger-type apparatus. The chemical composition of the oils was done by GC/FID and GC/MS, using the retention indices on DB-5 and Carbowax types of capillary columns in addition to mass spectra.  Results: The oils consisted mainly of terpenoids (55,45-87,75%). A total of 281 compounds accounted for 91,27-74,56% of the total amount of oils. The major constituents from the leaf oil were myrcene (17,44%), cis-calamenene (12,60%), α-pinene (5,48%), (E)-caryophyllene (5,16%), limonene (3,91%), p-cymene (3,71%), 1,8-cineole (2,80%), and α-humulene (2,80%). The floral bud essential oil consisted mainly of α-pinene (15,23%), cis-calamenene (12,70%), myrcene (8,59%), 1,8-cineole (4,26%), germacrene B (3,65%), α-humulene (3,55%), and (E)-caryophyllene oxide (2,93%). The major components of twig oil were cis-calamenene (11,31%), palmitic acid (7,99%), (E)-caryophyllene (4,68%), -cadinene (3,28%), cubenol (3,24%), and (Z)-caryophyllene oxide (2,94%). Conclusion: The presence of a significant quantity of myrcene and cis-calamenene seems to be characteristic of this species.

 

 

 

 

 

 

 

 

Keywords: Myrcianthes storkii, essential oils, cis-calamenene, myrcene, α-pinene, 1,8-cineole.

 

RESUMEN.Perfil químico de los aceites esenciales del árbol nativo costarricense Myrcianthes storkii (Myrtaceae)”. Introducción: El género Myrcianthes se extiende desde el sur de Florida hasta Chile, incluyendo el Caribe, y la especie Myrcianthes storkii es un arbusto o árbol que se encuentra en Costa Rica y el oeste de Panamá, en bosques húmedos, muy lluviosos, de neblina y robles (altitud de 1300 a 3150 m). Objetivo: Identificar la composición química de los aceites esenciales de las hojas, yemas florales y ramas de M. storkii de Costa Rica. Métodos: Obtuvimos los aceites esenciales mediante hidrodestilación en un aparato de tipo Clevenger. Determinamos la composición química de los aceites mediante cromatografía de gases con detector de ionización de llama (GC/FID) y cromatografía de gases acoplada a espectrometría de masas (GC/MS). Usamos los índices de retención en columnas capilares de tipos DB-5 y Carbowax, además de espectros de masas. Resultados: Los aceites están compuestos principalmente por terpenoides (55,45-87,75%). Identificamos 281 compuestos, que representaron el 91,27-74,56% de la cantidad total de los aceites. Los principales constituyentes del aceite de hoja fueron mirceno (17,44%), cis-calameneno (12,60%), α-pineno (5,48%), (E)-cariofileno (5,16%), limoneno (3,91%), p-cimeno (3,71%), 1,8-cineol (2,80%) y α-humuleno (2,80%). El aceite esencial de las yemas florales consistió principalmente en α-pineno (15,23%), cis-calameneno (12,70%), mirceno (8,59%), 1,8-cineol (4,26%), germacreno B (3,65%), α-humuleno (3,55%) y óxido de (E)-cariofileno (2,93%). Los componentes principales del aceite de las ramas fueron cis-calameneno (11,31%), ácido palmítico (7,99%), (E)-cariofileno (4,68%), δ-cadineno (3,28%), cubenol (3,24%) y óxido de (Z)-cariofileno (2,94%). Conclusión: La presencia de una cantidad significativa de mirceno y cis-calameneno parece ser característica de esta especie.

 

Palabras clave: Myrcianthes storkii, aceites esenciales, cis-calameneno, mirceno, α-pineno, 1,8-cineol.

 

The Myrtaceae is a pantropical family that comprises 17 tribes, about 144 genera, and over 5500 species (Wilson, 2011; Vasconcellos et al., 2017) distributed through southern regions of the world (with a few representatives in Africa). This family is composed mainly of shrubs and trees with most genera occurring in Australia and tropical and subtropical America. One of the characteristics of this family is the presence of oil glands that produce essential oils, mainly constituted by terpenoids.

Myrcianthes O. Berg is a genus composed of 39 recognized species ranging from southern Florida and Mexico to Bolivia and northern Argentina, Uruguay and north-central Chile and the Caribbean (McVaugh, 1963; Tucker et al., 1992; Tucker et al., 2002, World Flora Online [WFO], 2023). Myrcianthes storkii (Standl.) McVaugh [Synonyms: Eugenia rigidissima Cufod.; E. storkii Standl.; Myrcianthes rigidissima (Cufod.) W.D. Stevens] is a native shrub or tree of about 4 to 30m tall, with a distributional range from Costa Rica and western Panama. In Costa Rica, it is distributed in wet to very rainy, cloud, and oak forests, from 1300 to 3150m of elevation and it is known vernacularly as ‘guayabillo’ (Barrie, 2007). These forests can be found on mountain slopes, varying in the intensity of rainfall. The leaves are elliptic or obovate to broadly elliptic or broadly obovate, coriaceous, and glabrous on both sides. When the leaves are crushed, they give off a scent with aromatic flavor. Young twigs are coarsely sericeous.

Many studies on the chemical composition of essential oils of diverse species of Myrcianthes have been reported. Some of these studies are summarized in Table 1 in Appendix. The species and the morphological part from which the studied essential oil was isolated, the location, and the major compounds that constitute the oils are indicated. In general terms, the studied oils are constituted mainly of terpenes and terpenoids.

There is no information about possible traditional uses of M. storkii.

To the best of our knowledge, no previous reports on the chemical composition of essential oils of this species have been published.

 

MATERIALS AND METHODS

 

Plant materials: We collected leaves, floral buds, and twigs of Myrcianthes storkii from a single tree in the locality of Pacayas de Alvarado, Province of Cartago, Costa Rica (09°55'03"N 83°48'29"W, at an elevation of 1 700m). A voucher specimen is Luis J. Poveda Álvarez 4915 (F).

 

Extraction of essential oils: We isolated the oils from fresh plant material by hydrodistillation at atmospheric pressure, for 3 h using a Clevenger-type apparatus. The distilled oils were collected and dried over anhydrous sodium sulfate, filtered, and stored between 0°C and 10°C in the dark, until further analysis. The essential oil yields (v/w) were 0,05% (leaves), 0,09% (floral buds), and (0,01% twigs).

 

Gas chromatographic analyses (GC-FID): We analyzed the essential oils of M. storkii by capillary gas chromatography with a flame ionization detector (GC/FID) using a Shimadzu GC-2014 gas chromatograph. Data have been collected on a poly (5% diphenyl/95% dimethylsiloxane) fused silica capillary column (30m x 0,25mm; film thickness 0,25μm), (MDN-5S, Supelco). The GC integrations were performed with LabSolutions, Shimadzu GCsolution™ Chromatography Data System software, version 2.3. Operating conditions used were carrier gas N2, flow 1,0mL/min; oven temperature program: 60 to 280°C at 3°C/min, 280°C (2 min); sample injection port temperature 250°C; detector temperature 280°C; split 1:60.

 

Gas chromatography-mass spectrometry (GC-MS): GC-MS analyses were performed with a Shimadzu GC-2010 Plus gas chromatograph coupled with a GCMS-QP2010 SE apparatus and with GCMSsolution™ software (version 4.20), with NIST and Wiley 139 computerized databases. The analyzes were performed with two fused-silica-capillary columns with stationary phases of different polarities: 1,4-bis(dimethylsiloxy) phenylene dimethylpolysiloxane and polyethylene glycol. The data were obtained with a non-polar SLB™-5ms (Supelco) fused silica column (30m x 0,25mm; film thickness 0,25μm). Operating conditions were: carrier gas He, flow 1,4 mL min-1 with constant pressure; oven temperature was programmed linearly from 60°C to 280°C at 3°C min-1; sample injection port temperature 250°C; interface temperature 260°C; ionization voltage: 70 eV; ionization current 60μA; scanning speed 0,30s over 35 to 400 amu range; split 1:70. Also, the data were obtained with a second polar Supelcowax™10 (Supelco) fused silica column (30m x 0,25mm; film thickness 0,2 μm). Operating conditions were carrier gas He, flow 1,4mL min-1; oven temperature program: 60–220°C at 3°C min-1; sample injection port temperature 240°C; transfer line temperature 230°C; ionization voltage: 70 eV; ionization current 60 μA; scanning speed 0,30s over acquisition mass range, 35 to 400 amu; split 1:70.

 

Compound identification: We identified the essential oil constituents by comparison of their linear retention indices which were calculated in relation to a homologous series of n-alkanes, on a poly (5% diphenyl/95% dimethylsiloxane) type column (van den Dool & Kratz, 1963) and on polyethylene glycol capillary column and, by comparison of their mass spectra with those published in the literature (Adams, 2007), or those of our own homemade MS library, or comparing their mass spectra with those available in the computerized databases (NIST 107 and Wiley 139) or in a web source (Wallace, 2021). To obtain the retention indices for each peak, 0,1 μL of an n-alkane mixture (Sigma, C8–C32 standard mixture) was co-injected under the same experimental conditions reported above. Integration of the total chromatogram (GC/FID), expressed as area percent, without correction factors, has been used to obtain quantitative compositional data.

 

RESULTS

 

The essential oils from different parts of Myrcianthes storkii presented a complex mixture of compounds. The constituents identified, their experimental retention indices on two columns of diverse polarity, their relative percentage concentrations, and the methods used for their identification are presented in Table 2 in Appendix. The constituents are listed in order of elution on a non-polar poly-(5% phenyl 95% dimethylsiloxane) type column and for comparison purposes, previously published values of the retention indices are included (Adams, 2007; Wallace, 2021).

Myrcianthes storkii gave essential oils that were predominantly terpenoid in nature. The leaf and floral bud oils were dominated by monoterpenoids (42,66% and 38,63%, respectively) and sesquiterpenoids (44,67% and 44,69%, respectively), whereas twig oil was dominated by sesquiterpenoids (46,45%) and aliphatic compounds (18,77%). From the hydrodistilled oils, a total of 281 compounds were identified using GC/FID and GC/MS, accounting for 91,27% (leaves), 86,65% (floral buds), and 74,56% (twigs) of the total composition of the essential oils.

 

The leaf essential oil consisted largely of monoterpene hydrocarbons (36,98%) and sesquiterpene hydrocarbons (34,06%) with minor amounts of oxygenated derivatives. The main constituents were myrcene (17,44%), cis-calamenene (12,60%), α-pinene (5,48%), (E)-caryophyllene (5,16%), limonene (3,91%), p-cymene (3,71%), 1,8-cineole (2,80%), α-humulene (2,80%), cubenol (2,45%), α-copaene (2,22%), α-cubebene (2,10%), linalool (2,05%), (E)-caryophyllene oxide (2,04%), and β-phellandrene (2,00%). [See the total ion chromatogram (TIC) in Fig 1]. The chemical structures of some of these compounds are shown in Fig. 3.

 

Fig. 1. GC-MS chromatogram (TIC) of Myrcianthes storkii leaf essential oil [1. α-pinene; 2. myrcene; 3. p-cymene; 4. limonene; 5. 1,8-cineole; 6. linalool; 7. α-copaene; 8. (E)-caryophyllene; 9. α-humulene; 10. cis-calamenene; 11. 1-epi-cubenol; 12. cubenol].

 

The composition of the floral bud essential oil also was dominated by sesquiterpene hydrocarbons (32,36%), and monoterpene hydrocarbons (30,75%) with α-pinene (15,23%), cis-calamenene (12,70%), myrcene (8,59%), 1,8-cineole (4,26%), germacrene B (3,65%), α-humulene (3,55%), (E)-caryophyllene oxide (2,93%), α-copaene (2,24%), hinesol (2,16%), and α-cubebene (2,14%) as main constituents.

The twig essential oil was constituted mainly of sesquiterpenoids (46,45%) and aliphatic compounds (18,77%), with a minor quantity of monoterpenoids (6,84%). The major compounds found were cis-calamenene (11,31%), hexadecanoic acid (7,99%), (E)-caryophyllene (4,68%), -cadinene (3,28%), cubenol (3,24%), (Z)-caryophyllene oxide (2,94%), 1-epi-cubenol (2,45%), α-humulene (2,38%), and α-copaene (2,19%). The aliphatic mixture of compounds was constituted of acids (palmitic acid as the main compound), aldehydes, alcohols, esters, and hydrocarbons. [See the total ion chromatogram (TIC) in Fig 2].

 

 

Gráfico, Histograma

Descripción generada automáticamente

Fig. 2. GC-MS chromatogram (TIC) of Myrcianthes storkii twig essential oil [1. α-pinene; 2. myrcene; 3. p-cymene; 4. limonene; 5. α-copaene; 6. (E)-caryophyllene; 7. α-humulene; 8. δ-cadinene; 9. cis-calamenene; 10. (E)-caryophyllene oxide; 11. cubenol; 12. palmitic acid; 13. (E)-phytol].

 

 

Fig. 3. Structures of some constituents of the essential oils of Myrcianthes storkii from Costa Rica.

 

DISCUSSION

 

Analyzing the data in Table 1, the chemical composition of essential oils obtained from leaves of Myrcianthes is very varied. However, there seem to be some common, widespread compounds, such as the monoterpenes α-pinene, β-pinene, p-cymene, and limonene; the sesquiterpenes (E)-caryophyllene and α-humulene, and the terpenoids 1,8-cineole, linalool, terpinen-4-ol, α-terpineol, and (E)-caryophyllene oxide. Some of them are ubiquitous natural products that display ecological roles such as assisting in pollinator attraction, deterrent action against certain herbivores, and antimicrobial or allelopathic activities (Anaya et al., 2001; Gershenzon & Dudareva, 2007; Yazaki et al., 2017; Boncan et al., 2020; Escobar-Bravo et al., 2023).

Observing the data provided in Table 1, differences are found in the composition of the essential oils of samples of the same species that grow in different places. The oils of M. fragrans from Jamaica (Tucker et al., 1992) and Cuba (Pino et al., 2000) were rich in limonene, α-pinene, α-terpineol, and 1,8-cineole, whereas the essential oil from Venezuela (Mora et al., 2009) was rich in myrcene, β-caryophyllene, and other sesquiterpenoids. The oil from Ecuador (Armijos et al., 2018) differed from all the other samples and species in that it contained large amounts of geranial and neral. The two Costa Rican samples of this species gave oils with the unique fact of presenting as main compounds the benzenoid 1,3,5-trimethoxybenzene and (E)-methyl isoeugenol (Cole et al., 2008) and the phenylpropanoid ester, methyl (E)-cinnamate (Chaverri & Cicció, 2017).

The essential oil of M. storkii leaves is mainly constituted of terpenoids (87,75%) and small amounts of aliphatic compounds (2,55%) and benzenoids (0,91%). This oil is characterized by the dominant compounds myrcene (17,44%) and cis-calamenene (12,60%). In the studies conducted to date, only the oils of M. rhopaloides and M. leucoxyla from Colombia (Silva et al., 2016; Quijano-Célis et al., 2016), and M. fragrans from Venezuela (Mora et al., 2009) presented myrcene in significant quantities (17,7%, 17,4% and 8,9% respectively). Myrcene possesses sedative and anxiolytic properties (Rao et al., 1990), anti-inflammatory (Rufino et al., 2015), as well as antioxidant and cytoprotective properties (Xanthis et al., 2021); it also has anti-aging properties (Surendran et al., 2021) and anti-invasive activity on a human breast cancer epithelial cell line, MDA-MB-231 (Lee et al., 2015). This compound is a valuable renewable material for the industrially sustainable synthesis of many fine chemical products, which have high added value and are used in multiple applications (Behr & Johnen, 2009).

cis-Calamenene appears to be a distinctive compound in the essential oils of M. storkii from Costa Rica, accompanied by a large amount of myrcene. Of the studied species, only M. rhopaloides from Costa Rica (Cole et al., 2008) and M. myrsinoides from Ecuador (Montalván et al., 2018) presented significant amounts of the diastereoisomer, trans-calamenene (2,5% and 15,9% respectively). The cis-calamenene, an aromatic cadinene, is a major constituent (2,1-9,1%) of the essential oil of Cupressus bakeri Jeps. (Cupressaceae) foliage (Rafii et al., 1992; Kim et al., 1994) and is present in the commercial Baccharis dracunculifolia DC. essential oil (1,0%) (Weyerstahl et al., 1996). Also, this compound was identified in cuticular waxes of the stingless bees Nannotrigona testaceicornis and Plebeia droryana (Pianaro et al., 2009).

In summary, we have shown, for the first time, the chemical composition of Myrcianthes storkii essential oil from different morphological parts (leaves, flower buds, and twigs). The presence of a high amount of myrcene and cis-calamenene in the essential oils seems to be characteristic of this species.

 

ACKNOWLEDGEMENTS

 

The authors are grateful to Vicerrectoría de Investigación (UCR) for financial support (Project No. 809- B 9-170) and to Luis J. Poveda Álvarez (earlier in Herbarium JVR) for his help in the collection and identification of the species. The authors also thank the anonymous reviewers for their critical reading and valuable suggestions.

 

ETHICAL, CONFLICT OF INTEREST AND FINANCIAL STATEMENTS

 

The authors declare that they have fully complied with all pertinent ethical and legal requirements, both during the study and in the production of the manuscript; that there are no conflicts of interest of any kind; that all financial sources are fully and clearly stated in the Acknowledgements section; and that they fully agree with the final edited version of the article. A signed document has been filed in the journal archives.

 

REFERENCES

 

Adams, R. P. (2007). Identification of Essential Oil Components by Gas Chromatography/ Quadrupole Mass Spectrometry, (4th ed.). Allured Publishig Corporation.

 

Anaya, A. L., Espinosa-García, F., Cruz-Ortega, R. (Eds.).  (2001). Relaciones químicas entre organismos: aspectos básicos y perspectivas de su aplicación. Plaza y Valdés México.

 

Apel, M. A., Sobral, M., & Henriques, A. T. (2006). Composição química do oleo volatile de Myrcianthes nativas da região sul do Brasil. Revista Brasileira de Farmacognosia, 16(3), 402-407. https://doi.org/10.1590/S0102-695X2006000300019

 

Araujo, L., Rondón, M., Morillo, A., Páes, E., & Rojas-Fermín, L. (2017). Antimicrobial activity of the essential oil of Myrcianthes myrcinoides (Kunth) Grifo (Myrtaceae) collected in the Venezuelan Andes. PharmacologyOnLine, 2, 200-204. https://tinyurl.com/ynnzyf83

 

Armijos, C., Valarezo, E., Cartuche, L., Zaragoza, T., Finzi, P. V., Mellerio, G. G., & Vidari, G. (2018). Chemical composition and antimicrobial activity of Myrcianthes fragrans essential oil, a natural aromatizer of the traditional Ecuadorian beverage colada morada. Journal of Ethnopharmacology, 225, 319-326. https://doi.org/10.1016/j.jep.2018.07.018

 

Barrie, F. R. (2007). Myrtaceae. In B. E. Hammel, M. H. Grayum, C. Herrera, & N. Zamora (Eds.). Manual de Plantas de Costa Rica. Vol. 6. (pp. 728-784). Missouri Botanical Garden Press.

 

Behr, A., & Johnen, L. (2009). Myrcene as a natural base chemical in sustainable chemistry: a critical review. ChemSusChem: Chemistry-Sustainability-Energy-Materials, 2(12), 1072-1095.

 

Boncan, D. A. T., Tsang, S. S. K., Li, C., Lee, I. H. T., Lam, H.-M., Chan, T.-F., & Hui, J. H. L. (2020). Terpenes and terpenoids in plants: Interactions with environment and insects. International Journal of Molecular Sciences, 21(19), 7382. https://doi.org/10.3390/ijms21197382

 

Carmen, P., De La Torre, C., & Retamar, J. A. (1972). Essential oil of Myrcianthes callicoma. Essenze e Derivati Agrumari, 42, 429-432.

 

Chaverri, C., & Cicció, J. F. (2017). Essential oil from leaves of Myrcianthes fragrans (Myrtaceae) from Costa Rica. A new chemotype? Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 16(4), 385-397. https://www.redalyc.org/pdf/856/85651256004.pdf

 

Cole, R. A., Haber, W. A., Lawton, R. O., & Setzer, W. N. (2008). Leaf essential oil composition of three species of Myrcianthes from Monteverde, Costa Rica. Chemistry and Biodiversity, 5(7), 1327-1334. https://doi.org/10.1002/cbdv.200890120

 

Collin, G., Garneau, F.-X., Gagnon, H., Pichette, A., & Lavoie, S. (2010). Analysis of cymenes in essential oils: the case of Lepechinia meyeni (Walp.) Epling. Journal of Essential Oil Research, 22(4), 310-313. https://doi.org/10.1080/10412905.2010.9700333

 

de Jesús, R. A., de Oliveira, H. L. M., Bortolucci, W. de C., Campo, C. F. de A. A., Faria, M. G. I., Goncalves, J. E., Colauto, N. B., Gazim, Z. C. & Linde, G. A. (2021). Antioxidant and antibacterial activity of Myrcianthes pungens leaf essential oil. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 20(2), 147-161. https://doi.org/10.37360/blacpma.21.20.2.12

 

Demo, M. S., Oliva, M. M., Zunino, M. P., López, M. L., & Zygadlo, J. A. (2002). Aromatic plants from Yungas. Part IV: Composition and antimicrobial activity of Myrcianthes pseudo-mato essential oil. Pharmaceutical Biology, 40(7), 481-484. https://doi.org/10.1076/phbi.40.7.481.14689

 

Escobar-Bravo, R., Lin, P-A., Waterman, J. M., & Erb, M.  (2023). Dynamic environmental interactions shaped by vegetative plant volatiles. Natural Product Reports, 40, 840-865. https://doi.org/10.1039/d2np00061j

 

Gershenzon, J., & Dudareva, N. (2007). The function of terpene natural products in the natural world. Nature Chemical Biology, 3(7), 408-414. https://doi.org/10.1038/nchembio.2007.5

 

Granados, C., Yáñez, X., & Acevedo, D. (2014). Evaluación de la actividad antioxidante del aceite esencial foliar de Myrcianthes leucoxyla de norte de Santander (Colombia). Información Tecnológica, 25(3), 11-16. https://doi.org/10.4067/S0718-07642014000300003

 

Kim, Y-K., Cool, L. G., & Zavarin, E. cis-Calamenene-related sesquiterpenoids from Cupressus bakeri foliage. Phytochemistry, 36(4), 961-965.

 

Lee, J.-H., Lee, K., Lee, D.H., Shin, S. Y., Yong, Y., & Lee, Y. H. (2015). Anti-invasive effect of β-myrcene, a component of the essential oil from Pinus koraiensis cones, in metastatic MDA-MB-231 human breast cancer cells. Journal of the Korean Society for Applied Biological Chemistry, 58(4), 563-569. https://doi.org/10.1007/s13765-015-0081-3

 

Lopez, J. B., Jean, F. I., Gagnon, H., Collin, G., Garneau, F.X., & Pichette, A. (2005). Essential Oils from Bolivia. VII. Myrtaceae: Myrcianthes osteomeloides (Rusby) McVaugh and Myrcianthes pseudomato (Legrand) McVaugh. Journal of Essential Oil Research, 17(1), 64-65. https://doi.org/10.1080/10412905.2005.9698832

 

Lorenzo, D., Dellacassa, E., Bonaccorsi, I., & Mondello, L. (2001). Uruguayan essential oils. Composition of leaf oil of Myrcianthes cisplatensis (Camb.) Berg. ("Guayabo colorado") (Myrtaceae). Flavour and Fragrance Journal, 16(2), 97-99. https://doi.org/10.1002/1099-1026(200103/04)16:2<97::AID-FFJ952>3.0.CO;2-C

 

Malagón, O., Vila, R., Iglesias, J., Zaragoza, T., & Cañigueral, S. (2003). Composition of the essential oils of four medicinal plants from Ecuador. Flavour and Fragrance Journal, 18(6), 527-531. https://doi.org/10.1002/ffj.1262

 

Marin, R., Apel, M. A., Limberger, R. P., Raseira, M. C. B., Pereira, J. F. M., Zuanazzi, J. A. S., & Henriques, A. T. (2008). Volatile components and antioxidant activity from some myrtaceous fruits cultivated in Southern Brazil. Latin American Journal of Pharmacy, 27(2), 172-177. https://tinyurl.com/yo24maef

 

McVaugh, R. (1963). Tropical American Myrtaceae, II. Notes on generic concepts and descritions of previously unrecognized species. Fieldiana Botany, 29(8), 395-532. http://tinyurl.com/yp7k7hkh

 

Montalván, M., Peñafiel, M. A., Ramírez, J., Cumbicus, N., Bec, N., Larroque, C., Bicchi, C., & Gilardoni, G. (2019). Chemical composition, enantiomeric distribution, and sensory evaluation of the essential oils distilled from the Ecuadorian species Myrcianthes myrcinoides (Kunth) Grifo and Myrcia mollis (Kunth) DC. (Myrtaceae). Plants, 8, 511. https://doi.org/10.3390/plants8110511

 

Mora, V. F. D., Rojas, L. B., Usubillaga, A., Carmona, J., & Silva, B. (2009). Composición química del aceite esencial de Myrcianthes fragrans (Sw.) McVaugh de los Andes venezolanos. Revista de la Facultad de Farmacia, 51(1), 20-23.

 

Pianaro, A., Menezes, C., Kerr, W. E., Singer, R. B., Patricio, E. F., Marsaioli, A. J. (2009). Stingless bees: Chemical differences and potential functions in Nannotrigona testaceicornis and Plebeia droryana males and workers. Journal of Chemical Ecology, 35, 1117-1128. https://doi.org/10.1007/s10886-009-9679-4

 

Pino, J. A., Rosado, A., Bello, A., Urquiola, A., & García, G. (2000). Essential oil of Myrcianthes fragrans (Sw.) McVaugh from Cuba. Journal of Essential Oil Research, 12(2), 225-226. https://doi.org/10.1080/10412905.2000.9699503

 

Pombo, L. M., Borrego, P., Matulevich, J. Teheran, A. A., & Barajas, L. (2016). Composition and antimicrobial activity of the essential oils of three plant species from the Sabana of Bogotá (Colombia): Myrcianthes leucoxyla, Vallea stipularis and Phyllanthus salviifolius. Natural Products Communications, 11(12), 1913-1918. https://doi.org/10.1177/1934578X1601101234

 

Quijano-Célis, C., Pino, J. A., Echeverri, D., & Morales, G. (2016). Essential oil of Myrcianthes leucoxyla (Ortega) McVaugh leaves from Colombia. Journal of Essential Oil Bearing Plants, 19(6), 1510-1515. https://doi.org/10.1080/0972060X.2016.1224687

 

Rafii, Z., Cool, L. G., & Zavarin, E. (1992). Variability of foliar mono- and sesquiterpenoids of Cupressus bakeri. Biochemical Systematics and Ecology, 20(2), 123-131.

 

Rao, V. S., Menezes, A. M., & Viana, G. S. (1990). Effect of myrcene on nociception in mice. Journal of Pharmacy and Pharmacology, 42(12), 877-878. https://doi.org/10.1111/j.2042-7158.1990.tb07046.x

 

Romanenko, E. P. & Tkachev, A. V. (2006). Identification by GC-MS of cymene isomers and 3,7,7-trimethylcyclohepta-1,3,5-triene in essential oils. Chemistry of Natural Compounds, 42(6), 699-701. https://doi.org/10.1007/s10600-006-0256-6

 

Romero, D., Cartuche, L., Valarezo, E., Cumbicus, N., & Morocho, V. (2023). Chemical profiling, anticholinesterase, antioxidant, and antibacterial potential of the essential oil from Myrcianthes discolor (Kunth) McVaugh, an aromatic tree from Southern Ecuador. Antibiotics, 12(4), 677. https://doi.org/10.3390/antibiotics12040677

 

Rufino, A. T., Ribeiro, M., Sousa, C., Judas, F., Salgueiro, L., Cavaleiro, C., & Mendes, A. F. (2015). Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. European Journal of Pharmacology, 750, 141-150. https://doi.org/f64wrr

 

Setzer, W. N., Setzer, M. C., Moriarity, D. M., Bates, R. B., & Haber, W. A. (1999). Biological activity of the essential oil of Myrcianthes sp. nov. “Black Fruit” from Monteverde, Costa Rica. Planta Medica, 65(5), 468-469. https://doi.org/10.1055/s-2006-960816

 

Silva, D. A., Matulevich, J. A., & Devia, B. O. (2016). Composición química del aceite esencial de hojas de Myrcianthes rhopaloides (Kunt) McVaugh (Myrtaceae). Revista Facultad de Ciencias Básicas, 12(1), 84-91. https://doi.org/10.18359/rfcb.1857

 

Surendran, S., Qassadi, F., Surendran, G., Lilley, D., & Heinrich, M. (2021). Myrcene - What are the potential health benefits of this flavouring and aroma agent? Frontiers in Nutrition, 8, 699666. https://doi.org/10.3389/fnut.2021.699666

 

Taher, H. A., Santi de Bongioanni, M. N., & Talenti, E. C. J. (1983). Study of the essential oil of Myrcianthes cisplatensis (Cambassedes) Berg. Essenze e Derivati Agrumari , 53, 13-25.

 

Toloza, A. C., Zygadlo, J., Cueto, G. M., Biurrun, F., Zerba, E., & Picollo. M. I. (2006). Fumigant and repellent properties of essential oils and component compounds against permethrin-resistant Pediculus humanus capitis (Anoplura: Pediculidae) from Argentina. Journal of Medical Entomology, 43(5), 889-895. https://doi.org/10.1093/jmedent/43.5.889

 

Tucker, A. O., Maciarello, M. J., & Landrum, L. R. (1992). Volatile leaf oils of Caribbean Myrtaceae. VI. Myrcianthes fragrans (Sw.) McVaugh of Jamaica. Journal of Essential Oil Research, 4(3), 313-314. https://doi.org/10.1080/10412905.1992.9698071

 

Tucker, A. O., Maciarello, M. J., & Landrum, L. R. (2002). Volatile leaf oil of Myrcianthes coquimbensis (Barnéoud) Landrum et Grifo (Myrtaceae) of Chile. Journal of Essential Oil Research, 14(1), 40-41. https://doi.org/10.1080/10412905.2002.9699756

 

Ubiergo, G., Taher, H. A., & Talenti, E. C. (1986). Mono and sesquiterpenoids from the essential oil of Myrcianthes pungens. Anales de la Asociación Química Argentina, 74, 567-569.

 

van den Dool, H., & Kratz, P. D. (1963). A generalization of the retention index including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, 11, 463-471. https://doi.org/10.1016/S0021-9673(01)80947-X

 

Vasconcelos, T. N. C., Proença, C. E. B., Ahmad, B., Aguilar, D. S., Aguilar, R., Amorim, B. S., Campbell, K., Costa, I. R., De-Carvalho, P. S., Faria, J. E. Q., Giaretta, A., Kooij, P. W., Lima, D. F., Mazine, F. F., Peguero, B., Prenner, G., Santos, M. F., Soewarto, J., Wingler, A., & Lucas, E. J. (2017). Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae. Molecular Phylogenetics and Evolution, 109, 113-137. https://doi.org/10.1016/j.ympev.2017.01.002

 

Wallace, W. E. (2021). Mass spectra (by NIST Mass Spec Data Center). In P.J. Linstrom & W.G. Mallard (Eds.), Nits Chemistry WebBook: NIST Standard Reference Database Number 69. National Institute of Standards and Technology. http://webbook.nist.gov

 

Werka, J. S., Boehme, A. K., & Setzer, W. N. (2007). Biological activities of essential oils from Monteverde, Costa Rica. Natural Product Communications, 2(12), 1215-1219. https://doi.org/10.1177/1934578X0700201204

 

Weyerstahl, P., Christiansen, C., & Marschall, H. (1996). Constituents of Brazilian vassoura oil. Flavour and Fragrance Journal, 11(1), 15-23. https://doi.org/10.1002/(SICI)1099-1026(199601)11:1%3C15::AID-FFJ541%3E3.0.CO;2-H

 

World Flora Online (WFO). (2023). Myrcianthes O. Berg. https://tinyurl.com/yogu523b

 

Wilson, P. G. (2011). Myrtaceae. In Kubitzki, K. (ed.). Families and genera of vascular plants. Vol. 10. Flowering plants: Eudicots-Sapindales, Cucurbitales, Myrtaceae. Springer-Verlag.

 

Xanthis, V., Fitsiou, E., Voulgaridou, G. P., Bogadakis, A., Chlichlia, K., Galanis, A., & Pappa, A. (2021). Antioxidant and cytoprotective potential of the essential oil Pistacia lentiscus var. chia and its major components myrcene and α-pinene. Antioxidants, 10, 127. https://doi.org/10.3390/antiox10010127

 

Yáñez, X., Granados, C., Durán, M. (2013). Composición química y actividad antibacteriana del aceite esencial de Myrcianthes leucoxyla de Pamplona (Colombia). @limentech Ciencia y Tecnología Alimentaria, 11(1), 79-84. https://doi.org/10.240/16927125.v1.n1.2013.497

 

Yazaki, K., Arimura, G-I., Ohnishi, T. (2017). ’Hidden’ terpenoids in plants: Their biosynthesis, location and ecological roles. Plant Cell Physiology, 58(10), 1615-1621. https://doi.org/10.1093/pcp/pcx123

 

Zygadlo, J. A., Rotman, A. D., Perez-Alonso, M. J., & Velasco-Negueruela, A. (1997). Leaf oils of two Myrcianthes species from Argentina: M. pungens (Berg.) Legrand and M. cisplatensis (Camb.) Berg. Journal of Essential Oil Research, 9(2), 237-239. https://doi.org/10.1080/10412905.1997.9699470

 

 

APPENDIX

TABLE 1

Major compounds present in some Myrcianthes spp. essential oils.

Species

Country, location

Essential oil constituents (>2,0%)

Biological observations

References

M. callicoma McVaugh

Argentina

α-Pinene, limonene, and 1,8-cineole.

 

Carmen et al., 1972

M. cisplatensis (Camb.) Berg

Argentina

1,8-Cineole (13,5%), and geraniol (8,4%).

 

Taher et al., 1983

M. cisplatensis (Camb.) Berg

Argentina, Catamarca.

(Air-dried leaves)

(0,15%)

1,8-Cineole (40,7%), limonene (22,1%), α-terpineol (7,7%), linalool (4,8%), and α-pinene (4,3%).

 

Zygadlo et al., 1997

M. cisplatensis (Camb.) Berg

Uruguay, ‘Cerros pelados’, Canelones.

(Air-dried leaves)

1,8-Cineole (53,8%), α-pinene (16,6%), α-terpineol (4,2%), limonene (4,1%), and thujopsan-4α-ol (2,0%).

 

Lorenzo et al., 2001

M. cisplatensis Camb.) Berg

Brazil, Alegrete, Rio Grande do Sul.

(Fresh leaves) (0,2%)

1,8-Cineole (29,8%), limonene (10,9%), β-caryophyllene (10,8%), α-pinene (8,9%), α-terpineol (5,7%), guaiol (4,9%), globulol (4,8%), α-selinene (2,7%), aromadendrene (2,5%), and α-humulene (2,0%).

 

Apel et al., 2006

M. cisplatensis (Camb.) Berg

Argentina

(Dried leaves)

 

1,8-Cineole (45,7%), limonene (27,1%), α-terpineol (7,7%), linalool (4,8%), α-pinene (4,3%), and δ-cadinene (2,3%).

Fumigant and repellent properties against permethrin-resistant head lice.

Toloza et al., 2006

M. coquimbensis (Barnèoud) L.R. Landrum & Grifo

Chile, La Serena.

(Air-dried leaves)

 

Limonene (14,5%), carvone (8,7%), α-pinene (7,2%), β-pinene (5,7%), p-cymene (5,3%), trans-carveol (4,9%), cis-pinocarveol (4,3%), linalool (4,1%), trans-linalool oxide (furanoid) (3,6%), myrtenal (3,4%), pinocarvone (3,2%), verbenone (2,9%), cis-linalool oxide (furanoid) (2,8%), and myrtenol (2,2%).

 

Tucker et al., 2002

M. discolor (Kunth) McVaugh

Ecuador, Loja-Chuquiribamba Road, Loja.

(Fresh leaves)

(0,08%)

β-Caryophyllene (29,40%), bicyclogermacrene (7,45%), β-elemene (6,93%), α-cubebene (6,06%), α-humulene (3,96%), -cadinene (3,2%), limonene (2,63%), and amorpha-4,7(11)-diene (2,28%).

Strong inhibitory effect against acetylcholinesterase (AChE) and moderate antiradical effect.

Romero et al., 2023

M. fragrans (Sw.) McVaugh

Jamaica, Douglas Castle, St. Ann.

(Air-dried leaves)

 

Limonene (56,0%), α-terpineol (10,9%), 1,8-cineole (7,1%), α-pinene (6,9%), and β-pinene (2,0%).

 

Tucker et al., 1992

M. fragrans (Sw.) McVaugh

Cuba, Pinar del Río.

(Leaves and stalks) (1,4%)

α-Pinene (41,8%), limonene (30,0%), 1,8-cineole (6,5%), α-terpineol (5,7%), and cis-piperityl acetate (2,1%).

 

Pino et al., 2000

M. fragrans (Sw.) McVaugh

Costa Rica, Monteverde.

(Fresh leaves)

(See Cole et al., 2008).

Cytotoxic to Hep G2 and SK-Mel-28 cells.

Werka et al., 2007

M. fragrans (Sw.) McVaugh

Costa Rica, Monteverde.

(Fresh leaves) (0,03%)

1,3,5-Trimethoxybenzene (15,7%), α-cadinol (10,4%), (Z)-hex-3-en-1-ol (10,0%), eudesma-4(15),7-dien-1β-ol (9,0%), caryophyllene oxide (7,8%), spathulenol (7,5%), muurola-4,10(14)-dien-1β-ol (4,7%), caryophylla-4(12),8(13)-dien-5β-ol (4,2%), humulene epoxide II (3,9%), τ-muurolol (3,5%), α-muurolol (3,2%), and (E)-methylisoeugenol (2,5%).

 

Cole et al., 2008

M. fragrans (Sw.) McVaugh

Venezuela, Aldea Llanetes, Táchira.

(Fresh leaves) (0,08%)

β-Caryophyllene (11,5%), myrcene (8,9%), phellandrene/ limonene (8,7%), α-humulene (6,7%), α-copaen-8-ol (6,7%), globulol (4,9%), viridiflorol (4,7%), bicyclogermacrene (4,4%), α-copaene (3,5%), δ-cadinol (2,8%), δ-cadinene (2,6%), linalool (2,3%), and τ-cadinol (2,1%).

 

Mora et al., 2009

M. fragrans (Sw.) McVaugh

Costa Rica, Santo Domingo, Heredia

(Fresh leaves)

(0,5%)

Methyl (E)-cinnamate (39,6%), limonene (34,6%), α-pinene (6,8%), linalool (6,8%), and heptan-2-ol (2,0%).

 

Chaverri & Cicció, 2017

M. fragrans (Sw.) McVaugh

Ecuador, Cerro Villonaco, Loja. (Aerial parts)

(0,28-0,38%)

Geranial (23,6-31,1%), neral (17,8-24,3%), β-pinene (3,9-7,5%), α-pinene (2,8-5,9%), (2E,6E)-farnesal (3,2-8,0%), (2Z,6E)-farnesal (3,0-6,7%), and geraniol (2,5-3,1%).

Antimicrobial activity against Klebsiella pneumoniae, Candida albicans, and Saccharomyces cerevisiae

Armijos et al., 2018

M. gigantea (D. Legrand) D. Legrand

Brazil, Espumoso, Rio Grande do Sul.

(Fresh leaves)

(0,1%)

Spathulenol (28,9%), iso-spathulenol (9,5%, α-cadinol (7,0%), caryophyllene oxide (6,7%), limonene (4,5%), α-pinene (3,5%), β-pinene (2.8%), globulol (2,8%), α-copaene (2,6%), β-selinene (2,5%), and (Z)-hex-3-en-1-ol (2,4%).

 

 

Apel et al., 2006

M. leucoxyla (Ortega) McVaugh

Colombia, Pamplona, Santander.

(Dried leaves)

(0,3%)

α-Pinene (28,4%), 1,8-cineole (15,7%), β-caryophyllene (8,8%), spathulenol (3,3%), guaiol (3,1%), β-humulene (3,0%), and caryophyllene oxide (3,0%).

Antimicrobial activity against Staphylococcus aureus.

Antioxidant activity.

Yáñez et al., 2013.

Granados et al., 2014

M. leucoxyla (Ortega) McVaugh

Colombia,

Andean Plateau, Sabana de Bogotá

(Fresh leaves)

(0,1%)

Caryophyllene oxide (21,7%), α-terpineol (8.0%), linalool (7,8%), 1,8-cineole (6,3%), geraniol (5,1%), epi-globulol (3,4%), geranyl acetate (3,2%), germacrene D (3,2%), 2-carene (2,9%), and τ-cadinol (2,7%).

Antimicrobial activity against Pseudomonas aeruginosa and Salmonella typhimurium.

Pombo et al., 2016

M. leucoxyla (Ortega) McVaugh

Colombia,

Bogotá

(Young fresh leaves)

(0,1%)

Limonene (21,2%), myrcene (17,4%), spathulenol (7,1%), β-pinene (8,4%), α-pinene (5,4%), caryophyllene oxide (2,7%), linalool (2,4%), α-terpineol (2,3%), terpinen-4-ol (2,2%), and α-cadinol (2,2%).

 

Quijano-Célis et al., 2016

M. myrsinoides (Kunth) Grifo

Venezuela, Mérida.

(Leaves)

(0,5%)

Terpinen-4-ol (32,2%), o-cymene (8,2%), spathulenol (7,6%), caryophyllene oxide (7,1%), α-terpineol (4,1%), β-oplopenone (3,9%), limonene (3,8%), isoaromadendrene epoxide (3,8%), humulene epoxide II (3,0%), and τ-muurolol (2,5%).

Antimicrobial activity against Bacillus cereus, B. subtilis, and Staphylococcus epidermidis.

Araujo et al., 2017

 

M. myrsinoides (Kunth) Grifo

Ecuador, Gonzanamá, Loja.

(Fresh leaves)

(0,3%)

 

Caryophyllene (16,6%), trans-calamenene (15,9%), 1,8-cineole (10,4%), spathulenol (6,2%), limonene (5,3%), trans-cadina-1,4-diene (3,5%), cis-muurola-4(14),5-diene (2,6%), α-pinene (2,5%), α-copaene (2,1%), germacrene D (2,1%), and α-terpineol (2,0%).

 

Montalván et al., 2018

M. osteomeloides (Rusby) McVaugh

Bolivia, Cochabamba.

(Fresh leaves)

(0,6%)

1,8-Cineole (55,7%), α-pinene (17,9%), α-terpineol (8,5%), β-pinene (4,6%), and limonene (4,1%).

 

López et al., 2005

M. pseudo-mato (D. Legrand) Mc.Vaugh

Argentina, Oran, Salta.

(Dried leaves) (0,3%)

 

1,8-Cineole (32,5%), β-caryophyllene (18,9%), sabinene (6,6%), α-pinene (6,5%), aromadendrene (5,4%), τ-muurolol (4,5%), (E)-nerolidol (3,5%), τ-cadinol (3,4%), spathulenol (3,3%), α-terpineol (2,7%), β-eudesmol (2,3%), and α-humulene (2,1%).

Antimicrobial activity against Staphylococcus aureus, Bacillus cereus and Micrococcus luteus.

Demo et al., 2002

M. pseudo-mato (D. Legrand) Mc.Vaugh

Bolivia, Cochabamba.

(Fresh leaves)

(0,1%)

1,8-Cineole (24,4%), α-pinene (17,1%), linalool (11,7%), limonene (8,5%), γ-terpinene (7,3%), p-cymene (3,9%), and α-terpineol (2,4%).

 

López et al., 2005

M. pungens (Berg) D. Legrand

Argentina

(Leaves)

1,8-Cineole (13,5%), pulegone (9,4%), farnesol (9,0%), nerol (5,4%), and geraniol (4,5%).

 

Ubiergo et al., 1986

M. pungens (Berg) D. Legrand

Argentina, Catamarca.

(Air-dried leaves)

(0,2%)

1,8-Cineole (45,9%), limonene (17,3%), α-terpineol (8,1%), α-pinene (3,3%), linalool (3,0%), and globulol (2,8%).

 

Zygadlo et al., 1997

M. pungens (O. Berg) D. Legrand

Brazil, Viamão, Rio Grande do Sul.

(Fresh leaves)

(0,1%)

β-Caryophyllene (10,1%), spathulenol (9,7%), β-elemene (9,1%), α-cadinol (8,0%), bicyclogermacrene (6,9%), globulol (6,2%), epi-globulol (4,7%), β-bisabolene (3,3%), (E)-γ-bisabolene (3,3%), β-selinene (3,1%), 1,8-cineole (2,7%), caryophyllene oxide (2,3%), α-pinene (2,1%), τ-muurolol (2,1%), α-humulene (2,0%), and  δ-cadinene (2,0%).

 

Apel et al., 2006

M. pungens (O. Berg) D. Legrand

Brazil, Pelotas, Rio Grande do Sul.

(Cultivated, fresh edible, and ripped fruits)

β-Caryophyllene (32,7%), germacrene D (14,2%), bicyclogermacrene (11,2%), β-eudesmol (8,1%), furfural (7,7%), epi-globulol (3,9%), elemol (3,8%), α-humulene (3,3%), γ-eudesmol (2,5%), and α-eudesmol (2,5%).

 

Marín et al., 2008

M. pungens (O. Berg) D. Legrand

Brazil,

Maringá.

(Dried leaves)

(0,2%)

 

β-Caryophyllene (11,7%), 1,8-cineole (10,1%), bicyclogermacrene (7,9%), 5-epi-neointermedeol (6,0%), caryophyllene oxide (5,2%), limonene (3,5%), β-selinene (3,4%), (E)-β-ocimene (3,3%), β-elemene (3,0%), δ-cadinene (3,0%), α-cubebene (2,8%), germacrene A (2,3%), and germacrene B (2,2%).

Antimicrobial activity against Staphylococcus aureus and Bacillus cereus.

de Jesús et al., 2021

M. rhopaloides (Kunth) McVaugh

 

Ecuador, Cerro el Villonaco, Loja.

(Fresh leaves)

(0,3%)

Geranial (33,7%), neral (25,0%), β-pinene (9,0%), α-pinene (6,9%), geranyl acetate (3,0%), and geraniol (2,3%).

 

Malagón et al., 2003

*M. rhopaloides (Kunth) McVaugh

Costa Rica, Chomogo, Monteverde.

(Fresh leaves)

(See Cole et al., 2008).

Cytotoxic to SK-Mel-28 cells.

Werka et al., 2007

*M. rhopaloides (Kunth) McVaugh

Costa Rica, Chomogo, Monteverde.

(Fresh leaves) (0,02%)

Linalool (17,7%), α-cadinol (14,4%), spathulenol (11,1%), τ-cadinol (9,6%), 1-epicubenol (6,9%), α-muurolol (5,5%), cyclocolorenone (4,9%), α-terpineol (3,5%), eudesma-4(15),7-dien-1β-ol (3,4%), caryophyllene oxide (3,3%), tetradecan-1-ol (3,3%), trans-calamenene (2,5%), and δ-cadinene (2,2%).

 

Cole et al., 2008

*M. rhopaloides (Kunth) McVaugh

Costa Rica, Brillante, Monteverde.

(Fresh leaves)

(E)-Hex-2-enal (46,1%), 1,8-cineole (12,5%), linalool (9,1%), α-cadinol (6,7%), α-terpineol (4,4%), τ-muurolol (2,6%), and terpinen-4-ol (2,0%).

 

Cole et al., 2008

M. rhopaloides (Kunth) McVaugh

Colombia, Macheta, Cundinamarca (Fresh leaves)

(0,28%)

Citronelal (27,3%), myrcene (17,7%), citronelol (15,5%), neoisopulegol (6,6%), α-pinene (4,2%), β-pinene (4,2%), β-caryophyllene (2,5%), isopulegol (2,3%), and α-farnesene (2,2%).

 

Silva et al., 2016

M. sp. nov. ‘black fruit’

Costa Rica, Monteverde.

(Fresh leaves)

1,8-Cineole (52,8%), α-pinene (11,8%), α-terpineol (11,7%), heptan-2-ol (11,1%), β-pinene (8,4%), and limonene (4,3%).

In vitro citotoxic activity against Hep-G2 and SK-Mel-28 human tumor cell lines.

Setzer et al., 1999

M. sp. nov. ‘black fruit’

Costa Rica, Monteverde.

(Fresh leaves)

1,8-Cineole (38,3%), α-terpineol (21,2%), heptan-2-ol (15,5%), terpinen-4-ol (4,2%), and β-pinene (3,8%).

 

Cole et al., 2008

* According to Manual de Plantas de Costa Rica, vol. 6, M. rhopaloides (Kunth) McVaugh does not inhabit Costa Rica, and this name could probably have been used instead of M. storkii (?) (Barrie, 2007, p. 770).

 

TABLE 2

Chemical constituents of the essential oils of Myrcianthes storkii from Costa Rica

 

aCompound

bRILit

cRIExp

dSw10Exp

Class

(L) Leaf (%)

(F) Floral buds (%)

(T) Twigs

(%)

eIM

3-Methylbut-2-enal

790

 

1 206(F)

A

 

ftr

 

2;3

Hexanal

801

 

1 084(L,F)

A

tr

tr

tr

2;3

(E)-Hex-2-enal

846

841

1 222(L)

A

0,10

0,01

 

1;2;3

(Z)-Hex-3-enol

850

850

1 384(F)

A

0,65

0,08

 

1;2;3

(E)-Hex-2-enol

854

853

 

A

 

tr

 

1;3

Hexan-1-ol

863

863

1 352(L,F)

A

0,11

0,02

0,03

1;2;3;4

2-Butyl furan

885

882

 

Misc.

 

tr

 

1;3

Heptan-2-one

889

888

 

A

 

tr

 

1;3

Nonane

900

900

 

A

 

 

0,02

1;3

Bornylene (2-Bornane)

908

 

1 512(T)

M

 

 

tr

2;3

Heptanal

901

900

1 189(T)

A

0,04

tr

0,02

 

Anisole

913

914

 

B

 

 

0,03

1;3

Tricyclene

921

920

 

M

0,02

 

 

1;3

Cumene

924

924

1 177(L)

B

tr

 

 

1;2;3

α-Thujene

924

926

 

M

0,15

0,16

0,02

1;3

3,5-Dimethylene-1,4,4-trimethylcyclopentene

931

 

1 179(F)

IT

 

tr

 

2;3

α-Pinene

932

933

1 029(L,F,T)

M

5,48

15,23

1,57

1;2;3;4

α-Fenchene

945

944

1 056(L,F)

M

0,04

tr

 

1;2;3

 Camphene

946

945

1 068(L,F)

M

tr

0,13

 

1;2;3

(E)-Hept-2-enal

947

946

 

A

0,03

 

tr

1;3

Thuja-2,4(10)-diene

953

953

1 128(L,F)

M

tr

0,03

 

1;2;3

Isobutyl butanoate

958

961

1 159(F)

A

 

tr

 

1;2;3

Sabinene

969

972

1 123(F)

M

 

0,11

 

1;2;3

Oct-1-en-3-one

972

973

 

A

0,03

 

tr

1;3

β-Pinene

974

977

1 112(L,F,T)

M

0,64

0,88

0,15

1;2;3;4

Octan-3-one

979

979

 

A

 

 

tr

1;3

2-Pentylfuran

984

984

1 232(L,T)

Misc.

tr

 

tr

1;2;3

6-Methylhept-5-en-2-one

987

985

1 337(F)

A

 

tr

 

1;2;3

Myrcene

988

990

1 168(L,T)

M

17,44

8,59

1,78

1;2;3

Octanal

998

995

1 292(L,T)

A

0,18

 

0,06

1;2;3

δ-2-Carene

1 001

1 001

1 138(F)

M

 

tr

 

1;2;3

(E)-Hex-3-enyl acetate

1 001

1 000

 

A

0,06

 

 

1;3

α-Phellandrene

1 002

1 006

1 175(T)

M

0,46

0,63

0,13

1;2;3

p-Mentha-1(7),8-diene

1 003

 

1 172(L,F)

M

tr

tr

 

2;3

δ-3-Carene

1 008

1 011

1 149(L,F,T)

M

0,66

0,45

0,12

1;2;3

α-Terpinene

1 014

1 017

1 182(L,T)

M

0,13

0,14

0,05

1;2;3

m-Cymene*

1 020

1 021

1 272(L,F,T)

M

tr

tr

0,43

1;2;3

p-Cymene*

1 022

1 024

 

M

3,71

1,59

 

1;3

Limonene

1 024

1 029

1 204(L,F,T)

M

3,91

0,10

0,87

1;2;3;4

β-Phellandrene

1 025

1 030

1 212(L,T)

M

2,00

0,10

0,37

1;2;3

1,8-Cineole

1 026

1 031

1 211(L)

OM

2,80

4,26

0,09

1;2;3;4

(Z)-β-Ocimene

1 032

1 035

1 235(L,T)

M

0,94

1,50

0,18

1;2;3

Phenyl acetaldehyde

1 041

1 041

 

B

 

 

0,05

1;3

(E)-β-Ocimene

1 044

1 045

1 252(L,T)

M

0,43

0,22

0,09

1;2;3

(E)-Oct-2-enal

1 049

 

1 427(L)

A

tr

 

 

2;3

Isopentyl butanoate

1 052

1 056

1 270(L,F)

A

tr

tr

 

1;2;3

γ-Terpinene

1 054

1 058

1 245(L,T)

M

0,44

0,32

0,19

1;2;3

(E)-Oct-2-en-1-ol

1 060

1 064

 

A

tr

 

 

1;3

Octan-1-ol

1 063

1 065

1 559(L,F)

A

0,02

0,02

0,05

1;2;3

cis-Linalool oxide (Furanoid)

1 067

 

1 439(F)

OM

 

tr

 

2;3

p-Cresol

1 071

1 071

 

B

 

0,02

 

1;3

4-Pentenyl butanoate

1 076

1 075

1 341(L)

A

tr

0,32

 

1;2;3

m-Cymenene

1 082

1 083

1 420(L,F)

M

tr

tr

 

1;2;3

trans-Linalool oxide (Furanoid)

1 084

 

1 468(F)

OM

 

tr

 

2;3

p-Mentha-2,4(8)-diene

1 085

1 085

 

M

0,02

tr

 

1;3

Terpinolene

1 086

1 089

1 1282(T)

M

0,48

0,51

0,20

1;2;3

Methyl benzoate

1 088

1 091

 

B

 

tr

 

1;3

p-Cymenene

1 089

1 091

1 484(L,F)

M

0,03

tr

0,05

1;2;3

6,7-Epoximyrcene

1 090

 

1 410(L,F)

OM

tr

tr

 

2;3

Linalool

1 095

1 097

1 552(L,F,T)

OM

2,05

2,65

0,37

1;2;3;4

Undecane

1 100

 

1 100(L)

A

tr

 

 

2;3;4

Nonanal

1 100

1 104

1 394(L,T)

A

0,22

tr

0,80

1;2;3

Perillene

1 102

1 105

1 420(L,T)

Misc.

tr

0,10

0,05

1;2;3

1,3,8-Menthatriene

1 108

 

1 218(F)

M

 

tr

 

2;3

3-Methyl-3-butenyl isovalerate

1 112

1 114

 

A

 

0,06

 

1;3

exo-Fenchol

1 118

1 120

 

OM

 

0,05

 

1;3

cis-p-Menth-2-en-1-ol

1 118

1 120

 

OM

tr

 

 

1;3

α-Campholenal

1 122

 

1 487(F)

OM

 

tr

 

2;3

trans-Pinocarveol

1 135

 

1 646(F)

OM

 

tr

 

2;3

trans-p-Menth-2-en-1-ol

1 136

1 139

1 624(L)

OM

tr

0,04

 

1;2;3

cis-Verbenol

1 137

 

1 650(F)

OM

 

tr

 

2;3

(E)-Epoxy-ocimene

1 137

 

1 486(L)

OM

tr

 

 

2;3

cis-p-Menth-1,8-diene-1-ol

1 138

 

1 667(F)

OM

 

tr

 

2;3

neo-allo-Ocimene

1 140

1 144

 

M

 

0,06

 

1;3

trans-Verbenol

1 140

 

1 672(F)

OM

 

tr

 

2;3

Veratrol

1 141

 

1 726(F)

OM

 

tr

 

2;3

p-Menth-3-en-8-ol

1 145

1 146

 

OM

 

tr

 

1;3

Citronellal

1 148

1 158

 

OM

 

0,01

 

1;3

(E)-Non-2-enal

1 157

1 159

1 531(L,F,T)

A

0,51

0,01

0,24

1;2;3

Pinocarvone

1 160

1 166

1 555(F)

OM

 

0,01

 

1;2;3

1,3-Dimetoxybenzene

1 165

1 167

 

B

 

 

0,05

1;3

Ethyl benzoate

1 169

1 170

1 658(F)

B

 

0,09

 

1;2;3

Nonan-1-ol

1 172

1 171

 

A

 

 

0,05

1;3

Terpinen-4-ol

1 174

1 178

1 597(L,F)

OM

0,37

0,27

0,05

1;2;3;4

Naphthalene

1 178

1 183

1 721(L)

B

0,43

 

 

1;2;3

m-Cymen-8-ol

1 176

 

1 846(F)

OM

 

tr

 

2;3

p-Cymen-8-ol

1 179

 

1 846(L,F)

OM

tr

tr

 

2;3

Cryptone

1 183

1 185

 

IT

0,06

tr

 

1;3

Methyl salicylate

1 190

1 191

1 760(L,F)

B

0,29

0,37

0,16

1;2;3

α-Terpineol

1 192

1 195

1 693(F)

OM

0,16

0,15

0,07

1;2;3

Myrtenal

1 195

 

1 614(F)

OM

 

tr

 

2;3

trans-p-Menthan-2-one

1 199

1 198

 

OM

 

0,15

 

1;3

Decanal

1 201

1 206

1 497(T)

A

0,04

tr

0,61

1;2;3

Verbenone

1 204

 

1 688(F)

OM

 

tr

 

2;3

trans-Piperitol

1 207

1 209

 

OM

0,02

0,07

 

1;3

Octyl acetate

1 211

1 214

 

A

0,07

 

 

1;3

trans-Carveol

1 215

1 219

1 831(F)

OM

 

tr

 

1;2;3

(E,E)-2,4-Nonadienal

1 220

1 221

 

A

0,06

tr

 

1;3

1-p-Menth-9-al

1 221

1 222

 

OM

 

 

tr

1;3

β-Cyclocitral

1 225

1 222

 

IT

tr

 

 

1;3

cis-Carveol

1 226

 

1 861(F)

OM

 

tr

 

2;3

Nerol

1 227

1 230

 

OM

0,11

0,02

tr

1;3

Cumin aldehyde

1 238

1 237

 

OM

 

0,01

 

1;3

Carvone

1 239

 

1 719(F)

OM

 

tr

 

2;3

(Z)-Dec-3-en-1-ol

1 242

1 245

 

A

0,04

0,02

0,05

1;3

Geraniol

1 249

1 248

 

OM

0,06

0,04

0,06

1;3;4

(E)-Dec-4-en-1-ol

1 259

1 252

 

A

 

0,03

 

1;3

Pent-4-enyl hexanoate

1 260

1 254

1 534(F)

A

 

tr

 

1;2;3

(E)-Dec-2-enal

1 260

1 261

1 638(L,T)

A

0,19

0,07

0,41

1;2;3

trans-Ascaridole glycol

1 266

 

2 086(F)

OM

 

tr

 

2;3

Ethyl salicylate

1 266

1 261

1 796(L)

B

tr

0,06

 

1;2;3

Nonanoic acid

1 267

1 266

 

A

 

 

0,05

1;3

Dodecanol

1 271

1 271

 

A

 

 

0,50

1;3

Dihydro-linalool acetate

1 272

1 269

 

OM

 

tr

 

1;3

p-Menth-1-en-7-al (Phellandral)

1 280

1 283

 

OM

0,02

0,12

 

1;3

Car-2-en-10-al

1 289

1 281

 

OM

 

tr

 

1;3

p-Cymen-7-ol (Cumic alcohol)

1 289

 

2 093(F)

OM

 

tr

 

2;3

(2Z,4Z)-Deca-2,4-dienal

1 292

1 292

 

A

tr

 

0,05

1;3

Undecan-2-one

1 293

1 293

1 598(T)

A

 

 

0,05

1;2;3

Carvacrol

1 298

1 296

 

OM

0,05

 

 

1;3

2-Methylnaphthalene

1 298

1 299

1 830(L)

B

0,06

 

 

1;2;3

Undecanal

1 305

1 306

 

A

 

 

0,02

1;3

4-Hydroxy-cryptone

1 314

 

2 238(F)

IT

 

tr

 

2;3

(2E,4E)-Deca-2,4-dienal

1 315

1 317

 

A

0,10

0,05

0,27

1;3

Myrtenyl acetate

1 324

1 324

 

OM

 

tr

 

1;3

cis-Sabinyl acetate

1 325

1 336

 

OM

 

0,01

 

1;3

α-Cubebene

1 345

1 351

1 453(F,T)

S

2,10

2,14

tr

1;2;3

(E)-Undec-2-enal

1 357

1 363

 

A

 

 

0,20

1;3

Neryl acetate

1 359

1 364

 

OM

0,04

 

 

1;3

Cyclosativene

1 369

1 366

 

S

tr

 

 

1;3

trans-p-menth-6-en-2,8-diol

1 371

 

2 314(F)

OM

 

tr

 

2;3

α-Ylangene

1 373

1 373

1 473(L,F,T)

S

0,07

0,06

0,11

1;2;3

Isoledene

1 374

1 374

 

S

 

0,04

 

1;3

α-Copaene

1 374

1 378

1 484(L,F,T)

S

2,22

2,24

2,19

1;2;3

Geranyl acetate

1 379

1 382

 

OM

 

0,02

 

1;3

β-Cubebene

1 387

1 385

1 529(L)

S

tr

0,20

 

1;2;3

β-Bourbonene

1 387

1 387

1 508(L,F,T)

S

0,28

0,14

0,32

1;2;3

α-Bourbonene

1 388

1 388

1 501(L)

S

0,10

 

 

1;2;3

β-Elemene

1 389

1 393

1 582(F)

S

0,38

0,41

0,18

1;2;3

Dec-9-enyl acetate

1 399

1 398

 

A

0,08

0,10

 

1;3

Tetradecane

1 400

1 400

1 400(T)

A

 

 

tr

1;2;3

(Z)-Caryophyllene

1 408

1 407

1 563(F)

S

 

tr

 

1;2;3

α-Gurjunene

1 409

1 412

1 517(L,F,T)

S

0,88

0,88

0,76

1;2;3

(E)-Caryophyllene

1 417

1 422

1 584(L,F,T)

S

5,16

0,70

4,68

1;2;3;4

(E)-α-Ionone

1 428

1 431

1 838(L)

IT

0,13

 

 

1;2;3

β-Copaene

1 430

 

1 578(L,F)

S

tr

tr

 

2;3

α-Muurolene

1 431

1 432

 

S

 

 

0,21

1;3

γ-Elemene

1 434

1 435

 

S

0,22

0,47

0,21

1;3

cis-Thujopsene

1 435

1 436

 

S

 

 

0,05

1;3

α-Guaiene

1 437

1 438

 

S

0,08

0,07

0,10

1;3

Aromadendrene

1 439

 

1 629(L,F,T)

S

tr

tr

tr

2;3

6,9-Guaiadiene

1 442

1 441

 

S

 

0,11

 

1;3

cis-Muurola-3,5-diene

1 448

1 444

 

S

 

 

0,42

1;3

trans-Muurola-3,5-diene

1 451

1 450

1 616(T)

S

 

0,05

tr

1;2;3

α-Humulene

1 452

1 456

1 674(L,F,T)

S

2,80

3,55

2,38

1;2;3;4

Geranyl acetone

1 453

1 457

1 857(L)

IT

 

 

0,16

1;2;3

Allo-aromadendrene

1 458

1 463

 

S

0,48

0,47

0,59

1;3

cis-cadina-1(16),4-diene

1 461

1 464

 

S

tr

 

0,76

1;3

cis-Muurola-4(14),5-diene

1 465

1 464

 

S

 

tr

 

1;3

Cabreuva oxide C

1 466

 

1 737(L)

OS

tr

 

 

2;3

trans-cadina-1(16),4-diene

1 475

1 475

1 648(L,T)

S

0,48

0,97

tr

1;2;3

γ-Muurolene

1 478

1 478

1 675(L,F)

S

0,21

0,10

0,31

1;2;3

α-Amorphene

1 483

1 484

 

S

 

0,12

 

1;3

Germacrene D

1 484

1 483

1 693(L)

S

0,80

 

0,75

1;2;3

(E)-β-Ionone

1 487

 

1 922(L)

IT

tr

 

 

2;3

β-Selinene

1 489

1 489

1 700(L,F)

S

tr

tr

0,31

1;2;3

trans-Muurola-4(14),5-diene

1 493

1 494

1 695(L)

S

0,16

0,68

0,33

1;2;3

epi-Cubebol

1 493

 

1 927(L)

OS

tr

 

 

2;3

Valencene

1 496

 

1 718(L)

S

tr

 

 

2;3

Viridiflorene

1 496

 

1 680(L)

S

tr

0,31

 

2;3

α-Selinene

1 498

1 497

1 706(L)

S

0,32

 

0,32

1;2;3

Pseudowiddrene

1 498

 

1 661(L,F)

S

tr

tr

 

2;3

10,11-Epoxycalamenene

1 498

 

1 868(F)

OS

 

tr

 

2;3

α-Muurolene

1 500

1 500

1 712(L,T)

S

0,54

 

0,81

1;2;3

Cuparene

1 504

1 502

 

S

 

 

0,05

1;3

β-Bisabolene

1 505

1 504

 

S

 

 

tr

1;3

Germacrene A

1 508

1 508

 

S

0,43

0,18

0,17

1;3

α-Bulnesene

1 509

1 506

 

S

tr

 

 

1;3

(E,E)-α-Farnesene

1 509

1 509

 

S

tr

 

 

1;3

γ-Cadinene

1 513

1 516

1 748(F,T)

S

0,17

tr

0,14

1;2;3

Cubebol

1 514

1 515

 

OS

 

0,18

 

1;3

Geranyl isobutanoate

1 514

 

1 857(L,F)

M

tr

tr

 

2;3

α-dehydro-ar-Himachalene

1 516

 

1 888(F,T)

S

 

tr

tr

2;3

7-epi-α-Selinene

1 520

 

1 760(L)

S

tr

 

 

2;3

trans-Calamenene

1 521

 

1 820(F, T)

S

 

tr

tr

2;3

δ-Cadinene

1 522

1 524

1 742(L,T)

S

tr

 

3,28

1;2;3;4

cis-Calamenene

1 528

1 527

1 822(L,F)

S

12,60

12,70

11,31

1;2;3

α-dehydro-ar-himachalene

 1 530

 

1 887(L)

S

tr

 

 

2;3

trans-Cadina-1,4-diene

1 533

1 535

1 766(L,T)

S

1,00

1,38

1,40

1;2;3

10-epi-Cubebol

1 533

 

1 875(L)

S

tr

 

 

2;3

α-Cadinene

1 537

1 538

1 776(L)

S

0,16

0,33

 

1;2;3

α-Calacorene

1 544

1 545

1 896(L,T)

S

0,40

0,41

0,63

1;2;3

cis-Muurolol-5-en-4-β-ol

1 550

 

1 876(F)

OS

 

tr

 

2;3

Germacrene B

1 559

1 560

1 806(L,T)

S

1,94

3,65

0,07

1;2;3

(E)-Nerolidol

1 561

1 565

2 041(L,T)

OS

0,59

 

0,57

1;2;3;4

β-Calacorene

1 564

 

1 939(L,F)

S

tr

tr

 

2;3

Dodecanoic acid

1 565

1 566

 

A

 

 

0,24

1;3

Palustrol

1 567

1 570

 

OS

 

tr

 

1;3

Spathulenol

1 577

 

2 107(L,F,T)

OS

tr

0,10

tr

2;3

(Z)-Caryophyllene oxide

1 580

1 578

1 949(L,F,T)

OS

tr

tr

tr

1;2;3

(E)-Caryophyllene oxide

1 582

1 586

1 956(L)

OS

2,04

2,93

2,94

1;2;3

Gleenol

1 586

1 587

2 024(L,F,T)

OS

tr

0,27

0,50

1;2;3

Globulol

1 590

 

2 056(F)

OS

 

tr

 

2;3

Viridiflorol

1 592

 

2 062(L)

OS

tr

 

 

2;3

Hexadecane

1 600

 

1 600(L,T)

A

tr

 

tr

2;3

Ledol (epi-Globulol)

1 602

1 607

2 005(L,F,T)

OS

0,58

0,28

0,59

1;2;3

Humulene epoxide II

1 608

1 609

2 012(L,F,T)

OS

0,92

0,48

0,93

1;2;3

1,10-di-epi-cubenol

1 618

 

2 038(L,T)

OS

tr

tr

tr

2;3

Junenol

1 618

1 620

2 031(L,T)

OS

0,07

0,85

0,17

1;2;3

1-epi-Cubenol

1 627

1 632

2 046(L,F,T)

OS

1,87

1,41

2,45

1;2;3

Muurola-4,10(14)-dien-1β-ol

1 630

 

2 132(L)

OS

tr

 

 

2;3

epi-α-Cadinol (tau-Cadinol)

1 638

 

2 156(L,T)

OS

tr

tr

tr

2;3

Caryophylla-4(12),8(13)-dien-5α-ol

1 639

1 638

2 278(F)

OS

tr

0,16

0,48

1;2;3

Caryophylla-4(12),8(13)-dien-5β-ol

1 639

1 641

2 272(F)

OS

 

0,17

 

1;2;3

Hinesol

1 640

1 642

 

OS

 

2,16

 

1;3

epi-α-Muurolol

1 640

1 643

2 172(L,F,T)

OS

tr

0,50

tr

1;2;3

α-Muurolol

1 644

1 645

2 186(L,F)

OS

tr

0,65

 

1;2;3

Cubenol

1 645

1 646

 

OS

2,45

 

3,24

1;3

α-Cadinol

1 652

1 658

2 216(L,F,T)

OS

1,42

1,18

0,62

1;2;3

Selin-11-en-4-α-ol

1 658

1 659

2 231(L,F,T)

OS

0,05

tr

tr

1;2;3

cis-Calamenen-10-ol

1 660

 

2 323(L,F)

OS

tr

tr

 

2;3

trans-Calamenen-10-ol

1 668

1 666

2 353(L,F)

OS

tr

0,05

 

1;2;3

Tetradecanol

1 671

1 676

 

A

 

1,14

 

1;3

Cadalene

1 675

1 678

2 198(L,F)

S

0,08

tr

0,62

1;2;3

Mustakone

1 676

 

2 223(F)

IT

 

tr

 

2;3

Muurola-4,10(14)-dien-1-β-ol

1 686

1 683

 

OS

 

 

0,46

1;3

Eudesma-4(15),7-dien-1β-ol

1 687

1 683

 

OS

0,25

0,31

 

1;3

Pentadecan-2-one

1 697

 

2 120(T)

A

 

 

tr

2;3

Eudesma-7(11)-en-4-ol (Juniper camphor)

1 694

1 690

 

OS

tr

0,30

0,18

1;3

Heptadecane

1 700

1 700

 

A

 

 

0,09

1;3

Amorpha-4,9-dien-2-ol

1 700

1 699

2 336(L,F)

OS

0,17

tr

 

1;2;3

10-nor-Calamenen-10-one

1 702

 

2 349(F)

OS

 

tr

 

2;3

5-Hydroxy-cis-calamenene

1 713

 

2 325(F)

OS

 

tr

 

2;3

(2E,6Z)-Farnesol

1 714

1 712

 

OS

0,10

 

0,48

1;3

Nootkatol

1 714

1 717

2 458(L)

OS

0,05

0,30

 

1;2;3

Pentadecanal

1 717

1 717

 

A

 

0,05

 

1;3

(2Z,6E)-Farnesol

1 722

 

2 352(T)

OS

 

 

tr

2;3

Benzyl benzoate

1 759

1 766

2 603(L,F)

B

0,14

0,47

 

1;2;3

Tetradecanoic acid

1 762

1 767

2 722(T)

A

 

 

0,86

1;2;3

14-Hydroxy-α-muurolene

1 779

1 773

 

OS

 

tr

 

1;3

14-Hydroxy-δ-cadinene

1 803

1 806

 

OS

0,05

0,05

 

1;3

Hexadecanal

1 819

1 822

 

A

0,01

0,05

0,16

1;3

Hexahydrofarnesyl acetone

1 843

1 846

2 125(L)

IT

0,05

tr

0,30

1;2;3

Pentadecanoic acid

1 857

1 858

 

A

 

 

0,11

1;3

Benzyl salicylate

1 864

1 870

2 751(L)

B

0,05

 

 

1;2;3

Hexadecan-1-ol

1 874

1 879

2 378(T)

A

0,01

tr

0,12

1;2;3

Nonadec-1-ene

1 895

1 894

 

A

 

 

tr

1;3

Nonadecane

1 900

1 900

1 900(T)

A

 

 

0,40

1;2;3

Heptadecan-2-one

1 908

1 908

 

A

 

tr

 

1;3

(5E,9E)-Farnesyl acetone

1  913

1 906

 

IT

 

 

0,06

1;3

Heptadecanal

1 920

1 916

 

A

 

 

tr

1;3

Methyl hexadecanoate

1 921

1 923

 

A

 

 

tr

1;3

Isophytol

1 946

1 947

 

D

 

tr

 

1;3

(Z)-Hexadec-9-enoic acid

1 952

1 949

 

A

 

 

0,20

1;3

Geranyl benzoate

1 958

1 960

 

M

0,02

tr

 

1;3

Hexadecanoic acid

(Palmitic acid)

1 959

1 961

2 932(L,F,T)

A

tr

0,06

7,99

1;2;3;4

Ethyl hexadecanoate

1 993

1 990

2 250(T)

A

 

 

0,39

1;2;3

Eicosane

2 000

2 000

 

A

 

 

0,06

1;3

Manool oxide

2 009

2 002

 

D

 

 

0,16

1;3

Hexadecan-1-ol acetate

2 010

2 009

 

A

 

tr

 

1;3

(E,E)-Geranyl linalool

2 026

2 031

2 535(L,T)

D

0,05

tr

0,28

1;2;3

Heneicosane

2 100

2 100

2 100(T)

A

 

 

0,66

1;2;3

Nonadecan-2-one

2 101

2 100

 

A

 

tr

 

1;3

(E)-Phytol

2 107

 

2 612(L,F,T)

D

tr

tr

1,20

2;3

(Z)-Phytol

2 114

2 113

2 412(L)

D

0,13

0,05

 

1;2;3

Linoleic acid

2 134

2 132

 

A

 

0,08

0,74

1;3

Oleic acid

2 141

2 135

 

A

 

 

0,63

1;3

Palmitaldehyde, diallyl acetal

2 148

2 147

 

A

tr

tr

 

1;3

Ethyl linoleate

2 155

2 162

2 518(T)

A

 

tr

0,43

1;2;3

Ethyl linolenate

2 169

2 169

 

A

 

tr

 

1;3

Nonadecan-1-ol

2 181

2 188

 

A

 

 

0,06

1;3

Docosane

2 200

2 200

2 200(T)

A

 

 

0,25

1;2;3;4

Eicosanal

2 219

2 220

 

A

 

 

tr

1;3

Tricosane

2 300

2 300

2 300(T)

A

 

 

0,53

1;2;3;4

Heneicosan-2-one

2 306

2 305

 

A

 

 

0,08

1;3

Tetracosane

2 400

2 400

2 400(T)

A

 

 

0,33

1;2;3;4

Pentacosane

2 500

2 500

2 500(T)

A

 

 

0,70

1;2;3;4

Hexacosane

2 600

2 600

2 600(T)

A

 

 

0,19

1;2;3;4

Heptacosane

2 700

2 700

2 700(T)

A

 

 

0,07

1;2;3;4

Octacosane

2 800

2 800

2 800(T)

A

 

 

tr

1;2;3;4

Nonacosane

2 900

2 900

2 900(T)

A

 

 

tr

1;2;3;4

TOTAL

 

 

 

 

91,29

86,65

74,56

 

No. of compounds

 

 

 

 

160

199

144

 

 

 

 

 

 

 

 

 

 

Compound class

 

 

 

 

 

 

 

 

Total monoterpenoids

 

 

 

 

42,66

38,63

6,84

 

Monoterpene hydrocarbons (M)

 

 

 

 

36,98

30,75

6,20

 

Oxygenated monoterpenes (OM)

 

 

 

 

5,68

7,88

0,64

 

Total sesquiterpenoids

 

 

 

 

44,67

44,69

46,45

 

Sesquiterpene hydrocarbons (S)

 

 

 

 

34,06

32,36

32,84

 

Oxygenated sesquiterpenes (OS)

 

 

 

 

10,61

12,33

13,61

 

Diterpenoids (D)

 

 

 

 

0,18

0,05

1,64

 

Irregular terpenoids (IT)

 

 

 

 

0,24

tr

0,52

 

Aliphatics (A)

 

 

 

 

2,55

2,17

18,77

 

Benzenoids (B)

 

 

 

 

0,91

1,01

0,29

 

Miscellaneous (Misc.)

 

 

 

 

tr

0,1

0,05

 

aCompounds listed in order of elution from poly-(5% phenyl 95% dimethylsiloxane) type column. bRILit = DB-5 (Adams, 2007; Wallace, 2021). cRIExp = Retention index relative to C8-C32 n-alkanes on the SLB™-5ms column. dSw10Exp = Experimental retention index on Supelcowax™ 10. eIM = Identification methods: 1 = Retention index on poly-(5% phenyl/95% methylsiloxane) type column; 2 = Retention index on Supelcowax™10; 3 = MS spectra; 4 = Standard. ftr = Traces (<0,005%). *(Romanenko & Tkachev, 2006; Collin et al., 2010). Major terpenoids are in boldface.