

Aceites esenciales, fenología e interacciones bióticas de la planta invasora Crassocephalum crepidioides (Asteraceae) en Costa Rica

Carlos Chaverri^{1,2}, Carlos O. Morales³ & José F. Cicció^{1,2}

- Universidad de Costa Rica, Escuela de Química. 11501-2060 San José, Costa Rica; cachaverri@gmail.com; jfciccio@gmail.com
- Universidad de Costa Rica, Centro de Investigaciones en Productos Naturales (CIPRONA). 11501-2060, San José, Costa Rica.
- Universidad de Costa Rica, Escuela de Biología, Herbario USJ. 11501-2060, San José, Costa Rica; carlos.morales1264@gmail.com

Recibido 17-III-2022 • Corregido 31-V-2022 • Aceptado 18-VI-2022 DOI: https://doi.org/10.22458/urj.v14i2.4079

ABSTRACT. "Essential oils, phenology and biotic interactions of the invasive plant Crassocephalum crepidioides (Asteraceae) in Costa Rica". Introduction: Crassocephalum crepidioides (Asteraceae) is an herbaceous species with outstanding ethnobotanical uses in Africa and elsewhere, that has extended invasively in several tropical and subtropical regions around the world. **Objective:** To identify the chemical composition of the essential oils of *C. crepidioides*, to observe and measure phenological parameters (growth and development), and to record signs of the interaction of plants with other biotic agents throughout the life cycle in the Central Valley of Costa Rica. Methods: The essential oils were obtained via hydrodistillation in a Clevenger-type apparatus. The chemical composition of the oils was done by capillary gas chromatography (GC/FID and GC/MS). The biological field study was a descriptive account of phenological patterns observed during a year in 45 plants from three places, including vegetative and reproductive phases. Results: The essential oils consisted mainly of terpenoids (91,0 to 98,6%). A total of 231 different compounds were identified in the analyzed samples, corresponding to 94,9-99,3% of the total amount of the oils. The major compounds from the leaf oil were myrcene (67,5%) and βphellandrene (11,6%), while the stem oil mainly contained myrcene (42,2%) and α -copaene (16,5%). The major constituents of flower oil were myrcene (71,8%) and βphellandrene (17,2%). In the root oil, (E)- β -farnesene (29,5-46,0%), (Z)- β -farnesene (13,0-15,7%) and (E)caryophyllene (6,0-6,1%) predominated. The mean height of plants was considerably superior in open and sunny places compared to values in partially shaded habitats. In one of the places, 36% of plants died before completing the life cycle for the most part, due to herbivory that was present in more than 80% of all plants and damaged 100% of their shoot organs (stems, leaves, lateral buds, flower buds, and flowers). November and December were the months with maximal flower anthesis and fruit ripening. Conclusions: This species is recognized as annual, but 2/3 of plants completed their life cycle in 4 to 6 months, and due to herbivory and other environmental factors its propagation shows a considerable reduction.

RESUMEN. Introducción: Crassocephalum crepidioides (Asteraceae) es una especie herbácea con notables usos etnobotánicos en África y otras áreas, que se extendió como invasora en varias regiones tropicales y subtropicales del mundo. Objetivo: Determinar la composición química de los aceites esenciales de C. crepidioides (planta entera, hojas, tallos, flores y raíces), observar y medir parámetros fenológicos (crecimiento y desarrollo) y registrar indicios de interacción de las plantas con otros agentes bióticos a lo largo del ciclo de vida en el Valle Central de Costa Rica. Métodos: La extracción de los aceites se realizó mediante el procedimiento de hidrodestilación, usando un equipo Clevenger modificado. La composición química de los aceites se obtuvo mediante técnicas cromatográficas (GC/FID y GC/MS), el cálculo de los índices de retención en dos columnas de polaridad diferente y mediante los espectros de masa de cada constituyente. El estudio biológico de campo fue un registro descriptivo de patrones fenológicos observados durante un año en 45 plantas de tres sitios, abarcando las fases vegetativa y reproductiva. Resultados: Los aceites esenciales están constituidos principalmente por terpenoides (91,0-98,6%). Se identificaron en total 231 compuestos diferentes en todas las muestras analizadas, correspondientes a un 94,9-99,3% de los constituyentes totales. Los compuestos mayoritarios de los aceites de las hojas fueron mirceno (67,5%) y β-felandreno (11,6%), mientras que los aceites de los tallos registraron principalmente mirceno (42,2%) y α-copaeno (16,5%). Los constituyentes mayoritarios del aceite de las flores fueron mirceno (71,8%) y β-felandreno (17,2%). En los aceites de las raíces predominaron (E)- β -farneseno (46,0-29,5%), (Z)β-farneseno (13,0-15,7%) y (E)-cariofileno (6,0-6,1%). La altura promedio de las plantas fue considerablemente mayor en sitios abiertos y soleados que en sitios parcialmente umbrosos. En sitios abiertos las hojas superiores desarrollaron lóbulos laterales profundos, que fueron nulos o raros en sitios sombreados. En uno de los sitios 36% de plantas murió antes de completar el ciclo de vida, principalmente por herbivoría, que afectó más de 80% de todas las plantas y dañó 100% de órganos del

Keywords: Crassocephalum crepidioides, Asteraceae, essential oils, myrcene, β -phellandrene, (E)- β -farnesene, phenology, annual plants, invasive species, herbivory.

vástago. Noviembre y diciembre fueron los meses con máxima antesis floral y maduración de frutos. **Conclusiones:** Esta especie se reconoce como anual, pero 2/3 de las plantas observadas completaron su ciclo de vida en 4 a 6 meses y, debido a herbivoría y otros factores ambientales, su propagación se ha reducido notablemente.

Palabras clave: Crassocephalum crepidioides, Asteraceae, aceites esenciales, mirceno, β -felandreno, (E)- β -farneseno, fenología, plantas anuales, especies invasoras, herbivoría.

Asteraceae (Compositae) es una de las familias más grandes de plantas floríferas de la actualidad; tiene distribución cosmopolita, incluye más de 1 600 géneros y ca. 24 000 especies aceptadas, la mayoría herbáceas y arbustivas (Funk et al., 2009; Panero & Crozier, 2012). Numerosas especies asteráceas son importantes ecológica y económicamente; unas en horticultura como ornamentales y como fuente de insecticidas, mientras que otras tienen gran significación como fuentes de medicinas herbarias, alimentos y especias.

El género Crassocephalum (tribu Senecioneae) consta de 20 a 24 especies distribuidas de modo natural en África, las Islas Mascareñas y la Península Arábiga (The Plant List, 2010; Royal Botanic Gardens Kew, (s.f.); Rodríguez, 2020). La especie herbácea anual Crassocephalum crepidioides (Benth.) S. Moore [sinónimo Gynura crepidioides Benth. - ver Belcher, 1955] es nativa de África tropical y subtropical, desde Senegal hasta Etiopía y por el sur hasta Sudáfrica, además de las islas de Madagascar y Mauricio (Lisowski, 1991; Denton, 2004). Esta especie se ha propagado y naturalizado en toda Asia tropical y subtropical, Australia, muchas de las islas del Pacífico tropical y en varias regiones de América. Tanto las hojas como los tallos se convierten en una verdura comestible en países africanos como Sierra Leona, Benín, Ghana, Nigeria y Camerún. Dairo y Adanlawo (2007), así como Adjatin et al. (2013) evaluaron la calidad nutricional (composición proximal, perfil de minerales, perfil de aminoácidos y vitamina C) de materiales procedentes de Nigeria y Benín, respectivamente. La literatura registra aplicaciones en la medicina tradicional de muchos países de África y Asia para curar heridas e indigestión (Lisowski, 1991; Denton, 2004). Algunas investigaciones indican que extractos de estas plantas pueden captar radicales libres y son hepatoprotectores (Aniya et al., 2005; Arawande et al., 2012). También se ha informado que el extracto acuoso de esta especie posee propiedades oncolíticas e inmunopotenciadoras (Tomimori, et al., 2012), actividad diurética (Fidèle et al., 2019) y el extracto metanólico al 80% mostró actividad antidiabética (Bahar et al., 2017). En relación con la fracción volátil de la planta, el aceite esencial obtenido de plantas frescas en India mostró actividad citotóxica contra tres líneas celulares cancerosas humanas (Thakur et al., 2019) y el aceite obtenido de partes aéreas en Vietnam mostró actividad larvicida contra mosquitos (Hung et al., 2019).

Esta especie se considera invasora en numerosos países; por eso está incluida en el "Global Compendium of Weeds" (Compendio Mundial de Arvenses) y ha sido clasificada como una de las hierbas más agresivas de las últimas décadas en las regiones tropicales y subtropicales (Randall, 2012). *Crassocephalum crepidioides* se recolectó por primera vez en el Nuevo Mundo en Hawái, en 1929. El primer espécimen hallado en Costa Rica procedía de Puntarenas y fue recolectado en 1993. En 2004 esta especie fue observada en la Cordillera Central de República Dominicana (1650 m de altitud) (Nordenstam, 2007). Al iniciar la primera década del siglo XXI era difícil observarla en el Valle Central de Costa Rica, pero según especímenes de herbario ya en 2004 era "maleza común en zonas

verdes" del Jardín Botánico Lankester en Cartago (9°50′25" N, 83°53′25" W, 1360 m de altitud, M. Blanco 2662, USJ) y fuera del Valle Central en ese mismo año esta especie apareció en la vertiente atlántica, en un sitio notablemente distante y remoto, el "banco arenoso de una quebrada" en la Reserva Biológica Alberto Brenes, San Ramón de Alajuela (10°13′00" N, 84°37′00" W, 850 m, J. Gómez-Laurito 14281, USJ). Actualmente se halla en innumerables sitios abiertos, orillas de caminos, matorrales y terrenos abandonados de casi todas las regiones del país, según Rodríguez (2020) a altitudes entre 100 y 2000 m. Nuestras observaciones preliminares indican que algunas plantas de menos de 30 cm de altura florecen en pocos meses, mientras que otras alcanzan más de 1 m de altura y completan su ciclo en cerca de un año. Por eso será interesante hacer observaciones sobre el crecimiento de esta especie en Costa Rica y considerar algunos parámetros ambientales que pueden estar relacionados con el éxito de su propagación, o con su control natural. Las plantas observadas en Costa Rica en los últimos años con frecuencia muestran daños provocados por herbívoros y algunas manchas amarillas o grises.

Existen pocos informes científicos acerca de la fitoquímica de esta especie. Se informó sobre la presencia, en la parte aérea de plantas japonesas, de los alcaloides pirrolizidínicos jacobina y jacolina, que son característicos de plantas de *Senecio*, otro género asteráceo (Asada et al., 1985); se ha probado que la jacobina es un alcaloide hepatotóxico (Newman et al., 2015; Rozhon et al., 2017; Schramm et al., 2021). Existen pocos estudios en la literatura sobre componentes volátiles y están restringidos a Camerún (Zollo et al., 2000), India (Joshi, 2011; 2014; Thakur et al., 2019) y Vietnam (Hung et al., 2019). En la literatura se encuentran dos estudios adicionales, uno de Nigeria (Owokotomo et al., 2011) y otro de China (Wang et al., 2014), pero evidencian serios problemas metodológicos en la identificación de los constituyentes de los aceites. En la Tabla 1 se resumen los constituyentes principales de los aceites esenciales estudiados anteriormente, la parte de las plantas de donde se obtuvieron y los sitios de recolección.

TABLA 1Estudios previos de la composición química de aceites esenciales obtenidos de *Crassocephalum crepidioides* (Asteraceae).

Sitio de recolecta	Parte usada	Constituyentes mayoritarios (%)	Referencias
Camerún, Bafoussam.	Hojas frescas	Mirceno (31,1%), limoneno (20,6%), sabineno (17,6%), (E)- $β$ -ocimeno (5,6%), $β$ -pineno (3,7%) y $α$ -pineno (3,3%)	Zollo et al., 2000
Camerún, Yaundé	Hojas frescas	Mirceno (14,8%) y limoneno (69,7%)	Zollo et al., 2000
India, Belgaum, Karnataka, Ghats Occidentales	Partes aéreas frescas	Mirceno (45,3%), β-felandreno (20,2%), dauca-5,8-dieno (6,9%), (<i>E</i>)-β-farneseno (4,8%) y dauceno (3,6%)	Joshi, 2011
India, Belgaum, Karnataka, Ghats Occidentales	Flores frescas	Mirceno (46,1%), β-felandreno (31,0%) y <i>allo</i> -aromadendreno (4,9%)	Joshi, 2011
Nigeria, estado de Ondo, Akure	Hojas frescas	Datos no fiables	Owokotomo et al., 2012
Nigeria, estado de Ondo, Akure	Tallos frescos	Datos no fiables	Owokotomo et al., 2012
India, Belgaum, Karnataka, Ghats Occidentales	Raíces frescas	(E)-β-Farneseno (30,6%), α-humuleno (10,3%), (E)-cariofileno (7,2%), cis-β-guaieno (6,1%), α-bulneseno (5,3%), cipereno (3,7%), acetato de bornilo (3,5%), α-copaeno (3,5%), β-elemeno (3,4%) y β-chamigreno (3,0%)	Joshi, 2014
China, Guangzhou	Hojas frescas	Datos no fiables	Wang et al., 2014
India, Himachal Pradesh,	Partes aéreas frescas	Mirceno (65,9 %), β -felandreno (8,8 %), y α -pineno (3,1 %)	Thakur et al., 2019

Himalayas Occidentales Vietnam, distrito de Hoa Vang, ciudad de Da Nang	Hojas (aireadas a 25°C)	Mirceno (59,3 %), β-felandreno (11,9 %), y criptona (6,4 %)	Hung et al., 2019
Vietnam, distrito de Hoa Vang, ciudad de Da Nang	Tallos (aireados a 25°C).	Mirceno (26,1 %), α-pineno (10,7 %), α-humuleno (5,9 %), (E)- β -farneseno (5,2 %), óxido de cariofileno (5,0 %), (E)-cariofileno (4,4 %), epóxido II de humuleno (3,8 %) y α-copaeno (3,2 %)	Hung et al., 2019
Vietnam, distrito de Hoa Vang, ciudad de Da Nang	Flores (aireadas a 25°C).	Mirceno (43,3 %), β -felandreno (10,7 %), criptona (8,1 %), α -copaeno (3,3 %) y α -humuleno (3,1 %)	Hung et al., 2019

Es de gran interés estudiar la composición química de los aceites esenciales de las diversas partes de esta especie, para contrastarla con los pocos datos de la literatura. Hasta donde nos es conocido, no existen informes anteriores sobre la composición química de esta especie creciendo en el Nuevo Mundo. Ese conocimiento podría ayudar a entender la abundancia de estas plantas y su rápida reproducción, como una de las especies invasoras más exitosas de las últimas décadas (Randall, 2012; y observaciones personales de los autores). Los objetivos principales de este estudio fueron determinar químicamente la composición de los aceites esenciales de esta hierba, observar y medir parámetros fenológicos (crecimiento y desarrollo) y registrar indicios de interacción de las plantas con otros agentes bióticos a lo largo del ciclo de vida en el Valle Central de Costa Rica.

MATERIALES Y MÉTODOS

Ubicación del estudio: El estudio se llevó a cabo en el cantón de Montes de Oca, situado en el Valle Central de Costa Rica, provincia de San José, que registra una estación lluviosa entre mayo y noviembre y una estación seca entre diciembre y abril, con precipitación promedio anual de 2300 mm y temperatura promedio anual de 22°C (Instituto Meteorológico Nacional [IMN], 2021).

Material vegetal: Para el estudio químico se obtuvo el material de dos sitios distintos: tallos, hojas, inflorescencias y raíces de *Crassocephalum crepidioides* se recolectaron en San Rafael de Montes de Oca (SRMO; 9°56′38″ N, 84°01′00″ W), a una elevación de 1335 m, y en la Reserva Ecológica Leonelo Oviedo, en el Campus de la Universidad de Costa Rica, distrito Mercedes, Montes de Oca (MMO; 9°56′05.80″ N, 84°03′07.39″ W), a 1210 m.

Para el estudio biológico, se marcaron, midieron y observaron 45 plantas en tres sitios distintos del Campus de la Universidad de Costa Rica: Sitio 1, invernadero del Jardín Botánico Orozco, distrito San Pedro, Montes de Oca (9°56′38″ N, 84°01′00″ W, 1213 m); sitio 2, un matorral en la Reserva Ecológica Finca 4 en el distrito Mercedes, Montes de Oca (9°56′ N, 84°02′ W, 1210-1215m); sitio 3, un matorral en la Reserva Ecológica Leonelo Oviedo (9°56′14″ N, 84°02′59″ W, 1209 m), distrito Mercedes, Montes de Oca. Se prepararon especímenes testigo de herbario en los sitios 2 (C.O. Morales 2486, USJ) y 3 (C.O. Morales 2491, USJ).

Extracción de los aceites esenciales: Los aceites se obtuvieron mediante la operación de hidrodestilación a presión atmosférica, durante 3 horas, empleando un equipo Clevenger modificado. Los aceites esenciales hidrodestilados se recolectaron y secaron sobre sulfato de sodio anhidro, se filtraron, envasaron y conservaron entre 0 y 10°C, en viales color ámbar, hasta su posterior análisis. Los rendimientos obtenidos con material fresco (v/masa): 0,06% (planta entera), 0,05% (hojas), 0,02% (tallos), 0,02% (raíces) y 0,01% (flores).

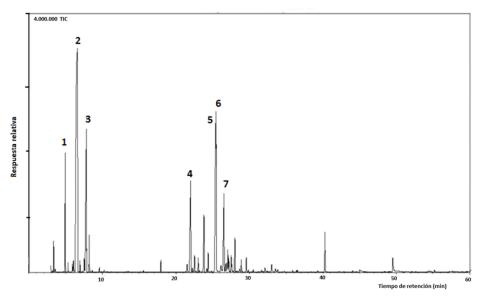
Cromatografía de gases con detector de ionización por llama (GC/FID): Los aceites esenciales de *C. crepidioides* se analizaron mediante cromatografía de gases con un detector de ionización por llama (GC/FID) empleando un cromatógrafo de gases Shimadzu, modelo GC-2014. Los datos se obtuvieron con una columna capilar de sílice fundida con una fase estacionaria de 5% fenil - 95% dimetilpolisiloxano (30m x 0,25mm de diámetro interno; espesor de película 0,25μm; MDN-5S, Supelco). Las integraciones de los cromatogramas se efectuaron empleando el sistema LabSolutions (software Shimadzu GC Solution, Chromatography Data System, versión 2,3). Las condiciones operativas usadas fueron: gas portador N₂, a un flujo de 1,0 mL min⁻¹; programa de temperatura del horno: (60-280°C a 3°C min⁻¹, y a 280°C durante 2min; temperatura del puerto de inyección de 250°C; temperatura del detector 280°C; inyección con división de flujo (*Split*) 1:60.

Cromatografía de gases/espectrometría de masas (GC/EM): El análisis mediante cromatografía de gases acoplada a un detector selectivo de masas (GC/EM) se efectuó en un cromatógrafo de gases Shimadzu, modelo GC-17A acoplado a un equipo Shimadzu GCMS-QP5000 y utilizando el software CLASS 5000 con las bases de datos computadorizadas Wiley 139 y NIST. Los datos se obtuvieron con una columna capilar de sílice fundida con la fase estacionaria 5% fenil - 95% dimetilpolisiloxano (30m x 0,25mm de diámetro interno; grosor de película 0,25µm; MDN-5S de Supelco). Las condiciones de operación usadas fueron: He como gas portador, a un flujo de 1,0mL min⁻¹; programa de temperatura del horno: 60-280°C a 3°C min⁻¹; temperatura del puerto de inyección 250°C; temperatura del detector, 260°C; voltaje de ionización: 70eV; corriente de ionización, 60μA; velocidad de barrido 0,5s sobre un ámbito de 38 a 400Da; inyección con división de flujo (Split) 1:70. También, los datos se obtuvieron con una segunda columna polar con fase estacionaria de polietilenglicol (30m x 0,25mm; grosor de película 0,25µm; Supelcowax™10 de Supelco) con las siguientes condiciones experimentales: He como gas portador, flujo 1,4mL min⁻¹; programa de temperatura del horno: 60-220°C a 3°C min⁻¹; temperatura del puerto de inyección 240°C; temperatura del detector 260°C; temperatura de la línea de transferencia 230°C; voltaje de ionización: 70eV; corriente de ionización 60μA; velocidad de barrido 0,30s sobre un ámbito de masa de 35 a 400Da; inyección con división de flujo (Split) 1:70.

Identificación de los compuestos: La identificación de los constituyentes de los aceites esenciales se efectuó empleando índices de retención lineales, que se calcularon utilizando una serie homóloga de alcanos lineales, en dos columnas capilares distintas, una no polar (5% fenil - 95% dimetilpolisiloxano) y otra polar (polietilenglicol, Supelcowax™ 10) (van den Dool & Kratz, 1963), y mediante comparación de sus espectros de masas con los publicados en la literatura (Stenhagen, et al., 1974; Swigar & Silverstein, 1981; Adams, 2007), y con los de nuestra base de datos propia, o mediante la comparación de los espectros de masas con los disponibles en las bases de datos computadorizadas (NIST107 y Wiley139) o disponibles en la *web* (Wallace, 2019). Para la obtención de los índices de retención lineales de cada pico, se co-inyectó 0,1 μL de la mezcla constituida por la serie homóloga de alcanos lineales (Sigma, C₈-C₃₂), bajo las mismas condiciones experimentales descritas arriba. Para la obtención de los datos cuantitativos se integró el cromatograma total (GC/FID) expresado como porcentajes de área sin el uso de factores de corrección.

Estudio de campo: Para registrar y describir parámetros fenológicos, entre junio de 2016 y septiembre de 2018 se marcaron, midieron y observaron 45 plantas de esta especie en tres sitios del campus de la Universidad de Costa Rica: Sitio 1, veinticinco plantas en la estación lluviosa de 2016 (junio a diciembre) en el invernadero del Jardín Botánico Orozco, distrito San Pedro; sitio 2, diez plantas maduras, en floración y fructificación, a inicios de diciembre de 2017, en un matorral dominado por pasto de elefante (*Pennisetum purpureum* Schumach., Poaceae), que había sido cortado varios meses antes, en la Reserva Ecológica Finca 4 en el distrito Mercedes; sitio 3, diez plantas maduras floreciendo y fructificando en septiembre de 2018 en un matorral en la Reserva Ecológica Leonelo Oviedo, junto a las instalaciones de la Escuela de Biología en el distrito Mercedes.

El invernadero del sitio 1 tenía un techo de malla metálica, abierto a los elementos; además, aunque tenía una pared en el lado este, el resto era abierto, con paredes de malla metálica y entrada natural de luz, aire y lluvia (entre mayo y noviembre). Vale indicar que había mucha sombra lateral de árboles y palmeras grandes (hasta ca. 25m de altura) en la periferia del invernadero. Allí las plantas de *Crassocephalum* crecieron de modo natural en bolsas y macetas de otras especies cultivadas. Los sitos 2 y 3 eran matorrales abiertos, soleados, con vegetación baja, dominada por gramíneas y otras plantas pioneras.


Solamente en el sitio 1 se observó el ciclo casi completo de las plantas marcadas, entre junio y diciembre de 2016. Cada mes se describió el desarrollo de ramas y hojas de las plantas marcadas, se midió la altura total de las plantas, longitud y anchura de hojas y se tomaron fotografías de diversas etapas de desarrollo. La fenología de la especie se registró en un ciclo de crecimiento hasta el tiempo de floración, fructificación y dispersión de frutos, incluyendo elongación y ramificación de tallos, producción de hojas, morfología de hojas, inicio de floración hasta la producción de frutos y su dispersión por el viento. Para llevar un registro de la interacción de cada planta marcada con otros agentes bióticos, se anotó en cada fecha de observación el número de hojas y tallos afectados por herbivoría, con cortes y perforaciones por insectos, así como marcas y manchas provocadas por otros organismos, y se estimó visualmente el porcentaje del área total afectada por herbivoría. En los sitios 2 y 3 se observó el desarrollo de inflorescencias, flores y frutos al final del ciclo de vida de las plantas. Vale aclarar que el estudio de campo fue descriptivo, más que cuantitativo.

RESULTADOS

Composición de los aceites esenciales: La composición química de los aceites esenciales obtenidos de la planta entera, flores y raíces de *C. crepidioides*, recolectada en San Rafael de Montes de Oca (SRMO), se resume en la Tabla 2. Se identificaron un total de 132 compuestos que representan más del 95% de la composición de los aceites hidrodestilados y que están constituidos principalmente por terpenos y terpenoides (más del 94%). El aceite esencial de la planta entera estuvo constituido casi por completo por hidrocarburos tanto monoterpénicos (65,4%) como sesquiterpénicos (30,7%). Los constituyentes principales fueron mirceno (51,2%), (*Z*)-β-farneseno (11,3%), β-felandreno (8,7%), α-copaeno (5,0%), (*E*)-β-farneseno (4,0%), germacreno D (3,4%) y α-pineno (3,1%) [ver el cromatograma de iones totales (TIC) en la Fig. 1]. En la composición del aceite esencial de flores predominaron los hidrocarburos monoterpénicos (92,6%), teniendo como componentes principales mirceno (71,8%) y β-felandreno (17,2%). En el aceite esencial de raíces (incluyendo en algunos casos la base rastrera y curvada del tallo), predominaron (*E*)-β-farneseno (46,0%), (*Z*)-β-farneseno (13,0%), (*E*)-cariofileno (6,0%), α-ylangeno (4,0%), β-longipineno (3,3%) y β-chamigreno (3,3%).

Los resultados de la composición química de los aceites esenciales obtenidos de hojas, tallos y raíces de C. crepidioides recolectada en la Reserva Ecológica Leonelo Oviedo (MMO) se resumen en la Tabla 3. Se identificaron un total de 175 compuestos, representando más del 95% de la composición de los aceites obtenidos. Los componentes principales del aceite esencial de las hojas fueron mirceno (67,5%) y β -felandreno (11,6%), seguidos por cantidades menores de α -copaeno (4,0%) y dauca-5,8-dieno (4,0%). En el aceite esencial de los tallos predominaron mirceno (42,2%) y α -copaeno (16,5%), acompañados por cantidades menores de α -pineno (6,3%), α -humuleno (5,8%), β -felandreno (3,7%) y (E)-cariofileno (3,3%). El aceite esencial obtenido de las raíces registró como compuestos principales (E)- β -farneseno (29,5%), (Z)- β -farneseno (15,7%), (E)-cariofileno (6,1%), α -pineno (5,8%), α -copaeno (5,8%), mirceno (4,5%), 4,11-selinadieno (4,0%) y α -gurjuneno (3,4%).

Fig. 1. Cromatograma GC/MS (TIC) del aceite esencial de plantas enteras de *Crassocephalum crepidioides:* **1.** α-pineno; **2.** mirceno; **3.** β-felandreno; **4.** α-copaeno; **5.** (*Z*)-β-farneseno; **6.** (*E*)-β-farneseno; **7.** germacreno D.

TABLA 2Composición química de los aceites esenciales de *Crassocephalum crepidioides* obtenidos de plantas recolectadas en San Rafael de Montes de Oca (SRMO), Costa Rica

Compuesto ^a	IR ^b	IR _{Lit} c	Clase	Planta entera (%)	Flores (%)	Raíces (%)	MI ^d
(<i>E</i>)-Hex-2-en-1-ol	790	792	Α	t			1;2
(<i>Z</i>)-Hex-3-enal	798	797	Α	0,4	t		1;2
(<i>E</i>)-Hex-3-en-1-ol	846	844	Α	t			1;2
(<i>E</i>)-Hex-2-en-1-ol	853	854	Α	t			1;2
Hexan-1-ol	864	865	Α	t	t		1;2;3
Heptanal	900	901	Α	t			1;2
Tricicleno	920	921	M	t			1;2
Artemisia trieno	923	923	M	t			1;2
α-Tuyeno	925	924	M	t	t		1;2
α-Pineno	932	932	M	3,1	1,5	0,4	1;2
Canfeno	945	946	M	0,2	t	0,1	1;2
Sabineno	970	969	M	0,2	0,2	0,1	1;2
β-Pineno	977	974	M	0,4	0,1	0,4	1,2,3
Mirceno	988	988	М	51,2	71,8	1,6	1;2;3
Acetato de (E)-hex-3-en-1-ilo	1002	1001	Α	t			1;2
α-Felandreno	1008	1002	M	0,1		0,1	1;2
δ-3-Careno	1009	1008	М		0,6		1;2
α-Terpineno	1016	1014	М	t		0,1	1;2
<i>p</i> -Cimeno	1024	1022	M	0,4	0,3	0,3	1;2
Limoneno	1025	1024	М	0,1	0,1	0,9	1;2;3
β-Felandreno	1026	1025	M	8,7	17,2	0,1	1;2
(Z)-β-Ocimeno	1034	1032	M	0,1	t	0,5	1;2
(<i>E</i>)-β-Ocimeno	1046	1044	М	0,7	0,6	0,2	1;2
γ-Terpineno	1057	1054	M	0,1		0,2	1;2
Terpinoleno	1088	1086	M	0,1	0,2	0,1	1;2
<i>p</i> -Cimeneno	1089	1089	М	t		0,1	1;2
Linalol	1095	1095	MO	t	t		1;2;3
Nonanal	1100	1100	Α	0,1	0,1	t	1;2

lpha-Fenchocanforona	1103	1104	MO		t		1;2
<i>p</i> -Menta-1,3,8-trieno	1106	1108	M	t			1;2
<i>trans</i> -Tuyona	1112	1112	M			t	1;2
cis-p-Ment-2-en-1-ol	1113	1113	MO	t			1;2
Hidrato de <i>trans</i> -pineno	1116	1119	MO		t		1;2
Allo-ocimeno	1126	1128	M	t			1;2
cis-p-Menta-2,8-dien-1-ol	1130	1133	MO	t			1;2
trans-p-Ment-2-en-1-ol	1134	1136	MO	t			1;2
Alcanfor	1143	1141	MO	t			1;2;3
(<i>E</i>)-Non-2-en-1-al	1149	1157	Α	t			1;2
(2 <i>E</i> ,6 <i>Z</i>)-Nona-2,6-dien-1-ol	1158	1159	Α	t			1;2
Borneol	1164	1165	MO	t		0,2	1;2
Terpinen-4-ol	1174	1174	MO	t		0,1	1;2;3
Criptona	1186	1183	TI	t			1;2
α-Terpineol	1192	1192	MO	t		t	1;2;3
trans-Pulegol	1210	1213	MO	t			1;2
neo-iso-Dihydrocarveol	1229	1228	MO	0,1			1;2
Éter metílico del timol	1233	1232	MO	t		t	1;2
Éter metílico del carvacrol	1238	1241	MO	-		0,3	1;2
Acetato de isobornilo	1284	1283	MO	-		1,0	1;2
Acetato de bornilo	1285	1285	MO	0,2			1;2
Timol	1289	1290	MO	t			1;2
Silfineno	1344	1345	S	-		t	1;2
Acetato de α-terpinilo	1347	1346	MO	-		t	1;2
Eugenol	1356	1356	PP	t			1;2;3
Acetato de nerilo	1358	1359	MO	t			1;2
Ciclosativeno	1366	1369	S	-		0,2	1;2
α-Ylangeno	1373	1373	S	0,2	0,1	4,0	1;2
Isoledeno	1372	1374	S	-,	t	,-	1;2
α-Copaeno	1376	1374	S	5,0	1,4		1;2
β-Bourboneno	1385	1387	S	t	_, -		1;2
β-Cubeneno	1386	1386	S	t			1;2
β-Elemeno	1391	1389	S	0,4		2,0	1;2
β-Longipineno	1403	1400	S	٥, ٠		3,3	1;2
α-Gurjuneno	1411	1409	S	0,4		0,1	1;2
(E)-Cariofileno	1418	1417	S	1,9	0,5	6,0	1;2;3
β-Copaeno	1427	1430	S	0,1	0,3	t	1;2
α- <i>trans</i> -Bergamoteno	1428	1432	S	0,5	0,2	t	1;2
γ-Elemeno	1432	1434	S	0,5	0,2	t	1;2
(Z)-β-Farneseno	1444	1440	S	11,3		13,0	1;2
α-Humuleno	1451	1452	S	11,5	1,5	13,0	1;2;3
(<i>E</i>)-β-Farneseno	1454	1454	S	4,0	1,5	46,0	1;2
Alloaromadendreno	1458	1458	S	t		40,0	1;2
9- <i>epi</i> -(<i>E</i>)-Cariofileno	1464	1464	S		t		1;2
β-Chamigreno	1479	1476	S			3,3	1;2
Germacreno D	1485	1484	S	3,4	1,0	3,3 t	1;2
β-Selineno	1488	1489	S	0,5	0,1		1;2
•		1403	3	0,5	υ, 1		
(7 E) a Farnacana			c	0.0		2/	1.7
(Z,E)-α-Farneseno	1494	1491	S	0,9		2,4	1;2
(<i>E,Z</i>)-α-Farneseno	1494 1496	1491 1498	S	0,9		0,1	1;2
(E,Z) - α -Farneseno α -Selineno	1494 1496 1499	1491 1498 1498	S S		0,3	0,1 0,1	1;2 1;2
(<i>E,Z</i>)-α-Farneseno α-Selineno α-Muuroleno	1494 1496 1499 1500	1491 1498 1498 1500	S S S	0,3	0,3 0,1	0,1 0,1 0,8	1;2 1;2 1;2
(<i>E,Z</i>)-α-Farneseno α-Selineno α-Muuroleno (<i>E,E</i>)-α-Farneseno	1494 1496 1499 1500 1505	1491 1498 1498 1500 1505	S S S	0,3 1,1	0,3	0,1 0,1 0,8 t	1;2 1;2 1;2 1;2
(<i>E,Z</i>)-α-Farneseno α-Selineno α-Muuroleno (<i>E,E</i>)-α-Farneseno β-Bisaboleno	1494 1496 1499 1500 1505	1491 1498 1498 1500 1505 1505	S S S S	0,3	0,3 0,1 0,2	0,1 0,1 0,8 t 0,4	1;2 1;2 1;2 1;2 1;2
(E,Z) - α -Farneseno α -Selineno α -Muuroleno (E,E) - α -Farneseno β -Bisaboleno δ -Amorfeno	1494 1496 1499 1500 1505 1507	1491 1498 1498 1500 1505 1505	S S S S S	0,3 1,1 t	0,3 0,1	0,1 0,1 0,8 t	1;2 1;2 1;2 1;2 1;2 1;2
(<i>E,Z</i>)-α-Farneseno α-Selineno α-Muuroleno (<i>E,E</i>)-α-Farneseno β-Bisaboleno δ-Amorfeno γ-Cadineno	1494 1496 1499 1500 1505 1507 1510	1491 1498 1498 1500 1505 1505 1511 1513	S S S S S S	0,3 1,1	0,3 0,1 0,2	0,1 0,1 0,8 t 0,4	1;2 1;2 1;2 1;2 1;2 1;2 1;2
(<i>E,Z</i>)-α-Farneseno α-Selineno α-Muuroleno (<i>E,E</i>)-α-Farneseno β-Bisaboleno δ-Amorfeno γ-Cadineno Cubebol	1494 1496 1499 1500 1505 1507 1510 1514 1515	1491 1498 1498 1500 1505 1505 1511 1513 1514	\$ \$ \$ \$ \$ \$ \$ \$ \$	0,3 1,1 t	0,3 0,1 0,2 0,3	0,1 0,1 0,8 t 0,4	1;2 1;2 1;2 1;2 1;2 1;2 1;2 1;2
(<i>E,Z</i>)-α-Farneseno α-Selineno α-Muuroleno (<i>E,E</i>)-α-Farneseno β-Bisaboleno δ-Amorfeno γ-Cadineno	1494 1496 1499 1500 1505 1507 1510	1491 1498 1498 1500 1505 1505 1511 1513	S S S S S S	0,3 1,1 t	0,3 0,1 0,2	0,1 0,1 0,8 t 0,4	1;2 1;2 1;2 1;2 1;2 1;2 1;2

			_				
β-Sesquifelandreno	1527	1521	S	t		0,2	1;2
Kessano	1528	1529	SO	t		1,3	1;2
trans-Cadina-1,4-dieno	1532	1533	S	t			1;2
Selina-3,7(11)-dieno	1549	1545	S	0,4		0,1	1;2
Germacreno B	1562	1559	S	t		0,7	1;2
(<i>E</i>)-Nerolidol	1563	1561	SO	t		t	1;2
(E)-Dendrolasina	1575	1570	SO			t	1;2
Óxido de cariofileno	1580	1582	SO	0,1		0,2	1;2
Ledol	1601	1602	SO	t			1;2
Epóxido II de humuleno	1609	1608	SO	0,1		0,3	1;2
1,10-di- <i>epi</i> -Cubenol	1614	1618	SO	t			1;2
<i>iso</i> -Leptospermona	1621	1621	SO	0,1			1;2
1- <i>epi</i> -Cubenol	1627	1627	SO	t			1;2
<i>epi</i> -α-Cadinol	1642	1638	SO	0,2			1;2
<i>epi</i> -α-Muurolol	1643	1640	SO	t			1;2
α-Muurolol (Torreyol)	1646	1644	SO	t		1,0	1;2
α-Cadinol	1654	1652	SO	0,2		t	1;2
Selin-11-en-4-α-ol	1656	1658	SO	t		0,3	1;2
<i>neo</i> -Intermedeol	1664	1658	SO	0,1		-	1;2
Intermedeol	1666	1665	SO	-		0,2	1;2
(2 <i>Z</i> ,6 <i>Z</i>)-Farnesal	1686	1684	SO	-		0,1	1;2
Germacra-4(15),5,10(14)-trien-1-α-ol	1687	1685	SO	0,1		-	1;2
2-Pentadecanona	1695	1697	Α	-		0.1	1;2
(2 <i>E</i> ,2 <i>Z</i>)-Farnesal	1712	1713	SO	-		t	1;2
Pentadecanal	1715	1715	Α	0,1		0,2	1;2
Sulfuro de menta	1738	1740	Misc	0,1		,	1;2
(2E,6E)-Farneseno	1740	1740	S	,		0,1	1;2
7-Acetoxi-elema-1,3-dien-8-ol	1778	1786	SO			t	1;2
α-Eudesmol	1787	1794	SO			t	1;2
Acetato de tetradecilo	1811	1811	Α	t		•	1;2
Hexadecanal	1818	1818	Α	t			1;2
Acetato de (2 <i>Z</i> ,6 <i>E</i>)-farnesilo	1820	1821	SO	•		0,2	1;2
Neofitadieno	1836	1830	D	0,8		٥,_	1;2
Hexahidrofarnesil acetona	1840	1843	TI	t			1;2
Farnesilacetona	1911	1913	TI	t			1;2
Sandaracopimara-8(14),15-dieno	1969	1968	D	t			1;2
Ácido hexadecanoico	1971	1973	A	t			1;2;3
(Z,E)-Geranil linalol	1997	1998	D	t			1;2
(E,E)-Geranil linalol	2020	2026	D	·		t	1;2
Octadecanol	2020	2020	A	t		·	1;2
(<i>E</i>)-Fitol	2108	2109	D	0,5			1;2
(<i>Z</i>)-Fitol	2116	2114	D	0,5		0,3	1,2,3
Tricosano	2300	2300	A	+		0,3	1;2;3
Pentacosano	2500		A	t t			1;2;3
Heptacosano	2700	2500 2700	A				
·			T T	t			1;2;3
Escualeno Total	2829	2833	ı	t	00.0	05.3	1;2
				99,3	98,6	95,2	
Clase de compuesto				CF 4	02.6	F 2	
Hidrocarburos monoterpénicos (M)				65,4	92,6	5,2 1.6	
Monoterpenos oxigenados (MO)				0,3	t	1,6	
Hidrocarburos sesquiterpénicos (S)				30,7	5,9	84,2	
Sesquiterpenos oxigenados (SO)				0,9	t	3,6	
Compuestos alifáticos (A)				0,6	0,1	0,3	
Terpenoides irregulares (TI)				t		0.0	
Diterpenos (D)				1,3		0,3	
Triterpenos (T)				t			
Otros				0,1			

 a Compuestos listados en orden de elución en una columna tipo 5% fenil - 95% dimetilpolisiloxano. b IR = Índice de retención en relación con una serie homóloga de C_8 - C_{32} n-alcanos en una columna tipo 5% fenil - 95% dimetilpolisiloxano. c IR_{Lit} = Índice de retención en DB-5 (Adams, 2007; Wallace, 2019). d Método de identificación: 1 = Índice de retención experimental; 2 = Espectro de masa (MS); 3 = Estándar. t = Trazas (<0,05%). Compuestos mayoritarios en negritas.

TABLA 3Composición química de los aceites esenciales de *Crassocephalum crepidioides* obtenidos de plantas recolectadas en Mercedes de Montes de Oca (MMO), Costa Rica.

Compuestoa	IRb	IR _{Lit} c	IRd	Clase	Hojas (H) %	Tallos (T) %	Raíces (R) %	MIe
(Z)-Hex-3-en-1-ol		797	1385 (H)	Α				2;3
Hexanal		801	1092 (H,T)	Α				2;3
(<i>E</i>)-Hex-2-enal	847	846	1225 (H,T)	Α	0,4	t		1;2;3
(<i>E</i>)-Hex-2-en-1-ol	854	854	1408 (H)	Α	t			1;2;3
Hexan-1-ol	862	863	1353 (H,T)	Α	t			1;2;3
Nonano	900	900		Α		t	t	1;3
Heptanal	901	901	1191 (R)	Α		t	t	1;2;3
Tricicleno	920	921		M	t	t	t	1;3
Artemisia trieno	924	923		M		t		1;3
α-Tuyeno	926	924		M	t	t	t	1;3
α-Pineno	933	932	1040 (H,T,R)	M	0,3	6,3	5,8	1;2;3;4
Canfeno	948	946	1078 (H,T,R)	M		0,2	0,6	1;2;3
Sabineno	971	969	1126 (H,T,R)	M	0,1	0,2	0,5	1;2;3
Oct-1-en-3-ol		974	1452 (H,R)	Α				2;3
β-Pineno	976	974	1115 (H,T,R)	M	0,1	0,3	1,4	1;2;3;4
Octan-3-ona		979	1255 (R)	Α				2;3
2-Pentil furano		984	1233 (T,R)	Misc				2;3
Mirceno	991	988	1177 (H,R)	M	67,5	42,2	4,5	1;2;3;4
trans-2,6-Dimetilocta-2,6-dieno		990	1404 (H,T)	M				2;3
α-Felandreno	1005	1002		M	0,1		0,1	2;3
α-Terpineno	1016	1014	1183 (R)	M	t		t	1;2;3
<i>p</i> -Cimeno	1023	1022	1274 (H,T,R)	M	0,4	0,3	0,6	1;2;3
Limoneno	1024	1024	1206 (H,T,R)	M		t	t	1;2;3
β-Felandreno	1030	1025	1217 (H,T,R)	M	11,6	3,7	2,0	1;2;3;4
1,8-Cineol		1026	1201 (H)	MO				2;3
(<i>Z</i>)-β-Ocimeno	1035	1032	1238 (H,T,R)	M	0,1	t	0,7	1;2;3
(<i>E</i>)-β-Ocimeno	1045	1044	1255 (H,T,R)	М	0,4	t	0,2	1;2;3
γ-Terpineno	1057	1054	1246 (T,R)	M	t	t	0,1	1;2;3
Terpinoleno	1088	1086	1285 (H,T,R)	M	0,1	0,1	t	1;2;3
<i>p</i> -Cimeneno		1089	1519 (T)	М			t	2;3
(Z)-Dietoxi-hex-3-eno	1089	1090		Α		t		1;3
6,7-Epoximirceno	1092	1090	1411 (R)	MO	0,1	0,1		1;2;3
Linalol	1094	1095	1552 (H,T,R)	MO	0,1		0,1	1;2;3;4
Hidrato de <i>trans</i> -sabineno	1099	1098		MO			t	1;3
Nonanal	1100	1100	1396 (H,T)	Α	0,1	t	t	1;2;3
Perilleno	1100	1102	1421 (H,T,R)	М		0,2		1;2;3
<i>p</i> -Menta-1,3,8-trieno	1106	1108		M			t	1;3
cis-p-Ment-2-en-1-ol	1114	1118	1610 (H)	MO	t	t	t	1;2;3
<i>p</i> -Menta-1,5,8-trieno	1122	1128		М	t		t	1;3
trans-Ment-2-en-1-ol	1134	1136	1559 (H)	MO		t		1;2;3
trans-Car-3-en-2-ol	1140	1136		MO	t		t	1;3
<i>cis</i> -Verbenol	1137	1137		MO		t		1;3
<i>exo</i> -Isocitral	1146	1140		M	t			1;3
Alcanfor	1147	1141	1504 (R)	MO			0,1	1;2;3
Óxido de β-Pineno	1156	1154		MO	t			1;3

(<i>E</i>)-Non-2-en-1-al	1157	1157		Α		t	t	1;3
Borneol	1170	1165	1695 (R)	MO			0,2	1;2;3
Terpinen-4-ol	1178	1174	1598 (H,T,R)	MO	t	t	0,1	1;2;3
Criptona	1186	1183		TI	0,1	0,1		1;3
α-Terpineol	1190	1192		MO		t	t	1;3
<i>cis</i> -Piperitol	1196	1195		MO			t	1;3
Decanal	1200	1201		Α		t	t	1;3;4
<i>trans</i> -Piperitol	1207	1207		MO	t	t	t	1;3
(2 <i>E</i> ,4 <i>E</i>)-Nona-2,4-dienal	1215	1212		Α			t	1;3
β-Ciclocitral	1214	1217	1610 (H)	M	t			1;2;3
Nerol (cis-Geraniol)	1221	1227	1798 (H)	MO	t			1;2;3
Éter metílico del timol	1229	1232	1593 (H,R)	MO	t	t	0,3	1;2;3
Neral	1235	1235		MO	t			1;3
Aldehído cumínico	1230	1238		MO		t		1;3
Geraniol (trans-nerol)	1250	1249	1847 (H)	MO				1;2;3
Geranial	1262	1264		MO	t			1;3
Felandral	1271	1274		MO	t	t		1;3
Acetato de isobornilo	1282	1283		MO	t	0,2		1;3
α-Terpinen-7-al	1285	1283	1772 (H)	MO	t	t		1;2;3
Acetato de bornilo	1285	1287	1573 (H,T,R)	MO		t	0,7	1;2;3
<i>p</i> -Cimen-7-ol	1289	1289	2091 (H)	MO		t		1;2;3
(2 <i>E,</i> 4 <i>Z</i>)-Deca-2,4-dienal	1290	1292		Α		t		1;3
(2 <i>E</i> ,4 <i>E</i>)-Deca-2,4-dienal	1315	1315		Α		t	t	1;3
3-Oxo- <i>p</i> -ment-1-en-7-al	1335	1330		MO	t			1;3
α-Cubebeno	1345	1345		S	t		t	1;3
Acetato de nerilo	1356	1359	1726 (H)	MO	t	t		1;2;3
Ciclosativeno	1368	1369	1470 (H,T,R)	S	0,2	0,7	0,3	1;2;3
α-Ylangeno	1372	1373		S	t			1;3
Isoledeno		1374	1530 (T)	S			t	2;3
α-Copaeno	1378	1374	1489 (H,T,R)	S	4,0	16,5	5,8	1;2;3
Acetato de geranilo		1379	1756 (H)	MO				2;3
β-Bourboneno	1385	1387	1510 (H,T)	S	t	t		1;2;3
β-Cubebeno	1387	1387	1531 (H)	S	t	t		1;2;3
β-Elemeno	1388	1389		S	0,2	t	1,3	1;3
Sativeno	1392	1390	1515 (H)	S	0,2	t		1;2;3
(<i>Z</i>)-Cariofileno		1408	1585 (H,R)	S				2;3
α-Gurjuneno	1406	1409	1519 (H,T,R)	S	t	0,2	3,4	1;2;3
α- <i>cis</i> -Bergamoteno		1411	1728 (R)	S				2;3
(<i>E</i>)-Cariofileno	1418	1417	1587 (H,T,R)	S	0,7	3,3	6,1	1;2;3;4
β-Ylangeno		1419	1419 (H)	S				2;3
2,5-Dimetoxi- <i>p</i> -cimeno		1424	1866 (H,R)	MO				2;3
β-Copaeno	1425	1430		S	0,1		t	1;3
α- <i>trans</i> -Bergamoteno	1431	1432	1581 (H,T)	S	0,2	1,1	0,3	1;2;3
β-Elemeno	1428	1434		S		0,1		1;3
α-Guaieno		1437	1677 (R)	S				2;3
6,9-Guaiadieno		1442	1532 (R)	S				2;3
α-Humuleno	1450	1452	1659 (H,T,R)	S	2,2	5,8		1;2;3;4
Geranil acetona		1453	1849 (H)	TI				2;3
(<i>Z</i>)-β-Farneseno	1453	1454	1670 (H,T,R)	S		t	15,7	1;2;3
α-Patchouleno	1451	1454		S	0,1			1;3
(<i>E</i>)-β-Farneseno	1459	1457		S			29,5	1;3
Rotundeno	1460	1457	1621 (R)	S			t	1;2;3
allo-Aromadendreno	1458	1458	1631 (H,T,R)	S		0,2		1;2;3
<i>epi</i> -Biciclosesquifelandreno		1469	1606 (H)	S				2;3
Dodecanol		1469	1966 (R)	Α				2;3
Dauca-5,8-dieno	1468	1471		S	4,0		-	1;3
4,11-Selinadieno	1477	1473		S			4,0	1;3
γ-Gurjuneno		1475	1641 (T)	S				2;3

γ-Muuroleno	1471	1478	1701 (H,T)	S		t		1,2
<i>ar</i> -Curcumeno		1479	1767 (R)	S				2;3
γ-Curcumeno		1481	1688 (R)	S				2;3
α-Amorfeno		1483	1477 (R)	S				2;3
Germacreno D	1478	1484	1000 (11 =)	S		0,4	0,3	1;3
(<i>E</i>)-β-lonona	4.406	1487	1922 (H,T)	TI		0.5		2;3
β-Selineno	1486	1489	1705 (H,T,R)	S		0,5	4.6	1;2;3
Eremofileno	1489	1489	1701 (R)	S S			1,6	1;2;3
<i>cis</i> -β-Guaieno Viridifloreno	1493	1492 1496	1519 (R)	S	0.1			2;3
α-Selineno	1500	1498	1710 (H,T,R)	s S	0,1 t	0,7	0,7	1;3 1;2;3
α-Muuroleno	1500	1500	1710 (H,R)	s S	0,7	0,7	0,7	1,2,3 1;2;3
β-Bisaboleno	1509	1505	1713 (11,11) 1722 (R)	S	0,7		1,4	1;2;3
Germacreno A	1504	1508	1722 (11)	S		0,1	1,7	1;3
γ-Cadineno	1513	1513		S	0,1	0,1	0,2	1;3
Cubebol	1313	1514	1875 (H,R)	so	0,1	0,1	0,2	2;3
trans-Calameneno		1521	1817 (T)	S				2;3
β-Sesquifelandreno	1521	1521	1761 (R)	S			t	1;2;3
δ-Cadineno	1521	1522	1748 (H,T,R)	S	0,1	2,1	1,4	1;2;3
<i>cis</i> -Calameneno		1528	2105 (R)	S	-,	,	,	2;3
Kessano	1528	1529	(/	SO			t	1;3
(Z)-Nerolidol		1531	2040 (H)	SO				2;3
α-Cadineno	1541	1537	1776 (H)	S	t			1;2;3
α-Calacoreno		1544	1896 (H,R)	S				2;3
Selina-3,7(11)-dieno	1543	1545	1761 (H,T)	S	0,1	1,3		1;2;3
Germacreno B	1555	1559	1807 (H,T,R)	S	t	1,0	0,1	1;2;3
(E)-Nerolidol	1560	1561	2040 (T,R)	SO	t	0,2	0,2	1;2;3;4
β-Calacoreno		1564	1938 (T)	S				2;3
Dendrolasina	1568	1570	1930 (R)	SO			0,1	1;2;3
Espatulenol	1574	1577	2107 (H)	SO	0,1			1;2;3
Óxido de cariofileno	1581	1582	1954 (H,T,R)	SO	0,1	0,7	0,6	1;2;3
β-Copaen-4α-ol		1590	2149 (T)	SO				2;3
Epóxido II de humuleno	1611	1608	2009 (H,T,R)	SO	0,1	0,8	0,7	1;2;3
Tetradecanal	1612	1611	1917 (R)	Α			0,1	1;2;3
Junenol	1624	1618	2022 (H)	SO	t			1;2;3
1-epi-Cubenol		1627	2044 (H)	SO				2;3
<i>epi</i> -α-Cadinol	1640	1638	2156 (H,T,R)	SO		0,4	1,0	1;2;3
<i>epi</i> -α-Muurolol	1632	1640	2171 (H,R)	SO	t			1;2;3
α-Muurolol	1636	1644	2183 (T)	SO	t			1;2;3
β-Eudesmol	1644	1649	2207 (T)	SO	0.2			2;3
α-Cadinol Selin-11-en-4-ol	1644	1652	2214 (H,R) 2232 (R)	SO SO	0,2		t 0,4	1;2;3
neo-Intermedeol	1657 1662	1658	2232 (N)	SO			0,4	1;2;3
Tetradecanol	1677	1658 1671		30 A			0,2	1;3 1;3
Mustakona	1678	1676		SO		t	0,1	1,3 1;3
Eudesma-4(15),7-dien-1β-ol	1686	1687		SO		·	t	1;3
β-Sinensal	1692	1699		SO			t	1;3
Pentadecanal	1713	1717	2021 (T,R)	A		0,2	0,3	1;2;3
Eremofilona	1742	1734	2021 (1)11)	SO		0,2	0,3	1;3
Sulfuro de menta	1742	1740	2122 (H)	SS	0,1		0,0	1;2;3
Ácido tetradecanoico	1762	1765	2786 (T,R)	Α	-,-	0,1	0,1	1;2;3
<i>epi</i> -Ciclocolorenona		1774	2067 (R)	SO		-,	-,	2;3
Neofitadieno	1835	1839	1926 (T)	D	1,1	0,4		1;2;3
Hexahidrofarnesil acetona	1838	1843	. ,	TI	•	t		1;3
Acetato de (2 <i>E</i> ,6 <i>E</i>)-farnesilo		1845	2221 (R)	SO				2;3
Ácido pentadecanoico	1860	1867	2894 (T,R)	Α		0,1	0,1	1;2;3
(5 <i>E</i> ,9 <i>E</i>)-Farnesil acetona	1905	1913	2365 (T)	TI		t		1;2;3
Hexadecanoato de metilo	1922	1921	2213 (T)	Α		t		1;2;3;4

Ácido (<i>E</i>)-9-hexadecanoico	1939	1940		Α			0,1	1;3
(E)-Fitol		1942	2613 (H)	D			-,	2;3
Ácido (<i>Z</i>)-9-hexadecanoico	1949	1952	` ,	Α			0,1	1,2
Ácido hexadecanoico	1971	1970	2979 (H,T,R)	Α	0,2	2,1	1,0	1;2;3;4
Hexadecanoato de etilo	1989	1993	2253 (T)	Α		0,4		1;2;3
(Z,E)-Geranil linalol	1998	1998		D		t		1;3
Linoleato de metilo	2087	2095	2484 (T)	Α		0,1		1;2;3;4
Oleato de metilo	2094	2095	2473 (T)	Α		0,1		1;2;3;4
(<i>Z</i>)-Fitol	2106	2107	2614 (T,R)	D		0,5	0,2	1;2;3
Estearato de metilo	2128	2128		Α		t		1;3;4
Ácido linoleico	2130	2132		Α		0,2	t	1;3;4
Ácido oleico	2137	2141		Α		0,1		1;3;4
Linoleato de etilo	2155	2159	2530 (T)	Α		0,3		1;2;3
Linolenato de etilo	2161	2166	2583 (T)	Α		0,2		1;2;3
Total					96,4	94,9	96,2	
Total Clase de compuesto					96,4	94,9	96,2	
Clase de compuesto					96,4 80,7	94,9 53,5	96,2 16,5	
Clase de compuesto Hidrocarburos monoterpénicos					80,7	53,5	16,5	
Clase de compuesto Hidrocarburos monoterpénicos (M)								
Clase de compuesto Hidrocarburos monoterpénicos (M) Monoterpenos oxigenados					80,7	53,5	16,5 1,5	
Clase de compuesto Hidrocarburos monoterpénicos (M) Monoterpenos oxigenados (MO)					80,7	53,5	16,5	
Clase de compuesto Hidrocarburos monoterpénicos (M) Monoterpenos oxigenados (MO) Hidrocarburos sesquiterpénicos					80,7 0,2 13,0	53,5 0,3 34,1	16,5 1,5 72,6	
Clase de compuesto Hidrocarburos monoterpénicos (M) Monoterpenos oxigenados (MO) Hidrocarburos sesquiterpénicos (S) Sesquiterpenos oxigenados (SO)					80,7 0,2 13,0 0,5	53,5	16,5 1,5 72,6 3,5	
Clase de compuesto Hidrocarburos monoterpénicos (M) Monoterpenos oxigenados (MO) Hidrocarburos sesquiterpénicos (S) Sesquiterpenos oxigenados (SO) Compuestos alifáticos (A)					80,7 0,2 13,0 0,5 0,7	53,5 0,3 34,1 2,1 3,9	16,5 1,5 72,6	
Clase de compuesto Hidrocarburos monoterpénicos (M) Monoterpenos oxigenados (MO) Hidrocarburos sesquiterpénicos (S) Sesquiterpenos oxigenados (SO) Compuestos alifáticos (A) Terpenoides irregulares (TI)					80,7 0,2 13,0 0,5	53,5 0,3 34,1 2,1 3,9 0,1	16,5 1,5 72,6 3,5 1,9	
Clase de compuesto Hidrocarburos monoterpénicos (M) Monoterpenos oxigenados (MO) Hidrocarburos sesquiterpénicos (S) Sesquiterpenos oxigenados (SO) Compuestos alifáticos (A)					80,7 0,2 13,0 0,5 0,7	53,5 0,3 34,1 2,1 3,9	16,5 1,5 72,6 3,5	

^aCompuestos listados en orden de elución en una columna tipo 5 % fenil - 95 % dimetilpolisiloxano. ^bIR = Índice de retención en relación con una serie homóloga de C₈-C₃₂ *n*-alcanos en una columna tipo 5 % fenil - 95 % dimetilpolisiloxano. ^cIR_{Lit} = Índice de retención en DB-5 (Adams, 2007; Wallace, 2019). ^dIR = Índice de retención en Supelcowax 10[™]. ^eMétodo de identificación: 1 = Índice de retención experimental (DB-5); 2 = Índice de retención experimental (Supelcowax 10[™]); 3 = Espectro de masa (MS); 4 = Estándar. t = Trazas (<0,05 %). Compuestos mayoritarios en negritas. Nota: Los datos porcentuales fueron determinados únicamente en la columna tipo DB-5.

Estudio de campo: La mayoría de las plantas observadas empezaron su desarrollo entre mayo y junio. El crecimiento vegetativo se prolongó hasta agosto y septiembre, con aumento evidente de los parámetros medidos de altura de las plantas y longitud más anchura de las hojas. Al final de este período generalmente cesó el crecimiento vegetativo en el tallo principal y aparecieron los primeros botones florales, tanto en tallo principal como en ramas laterales. En el sitio 1 se hicieron las mediciones indicadas una vez por mes en junio, julio, agosto y septiembre; sin embargo, a partir de octubre no se midieron tallos ni hojas por estar muy dañados por herbivoría. Además, entre octubre y diciembre la mayoría de las plantas desarrollaron principalmente inflorescencias e infrutescencias.

Plantas en activo crecimiento generalmente tienen el tallo de color morado en los 8 a 12cm basales. La base es a menudo rastrera y curvada, como en jota (J), y tiene casi siempre raíces caulinares de soporte, pivotantes, en uno o más nudos, sobre todo si el tallo crece inclinado. Un par de cotiledones opuestos son evidentes todavía en plantas de dos meses (Fig. 2A); en general se secan y caen pronto, o sufren por herbivoría, o bien se secan, se ponen amarillos y permanecen, en ocasiones solo uno, pero en plantas de unos tres meses ya no existen rastros de cotiledones.

En el sitio 1 (invernadero) los cotiledones midieron (junio y julio) 0,9 - 1,3cm de largo y 0,5 - 0,7cm de ancho (n = 16). En algunas plantas pronto se perdió un cotiledón y en el mismo nudo se desarrollaron raíces caulinares opuestas al cotiledón presente.

La altura promedio de las plantas del sitio 1 fue 12,0cm [ámbito: (1,6-) 2,5 – 24,9 (n = 24)] a finales de junio y 56cm [ámbito: (12,4-) 18,2 – 106 (n = 22)] a finales de septiembre; esto significa que en promedio esas plantas aumentaron la altura 4,7 veces en 3 meses. Las plantas de los sitios 2 y 3 (ambos matorrales abiertos y soleados) midieron en promedio 111cm [ámbito: 43 - 160cm] a inicios de diciembre.

Las primeras 2 a 5 hojas que se forman después de los cotiledones fueron más pequeñas, más redondeadas, más enteras y aparentemente más delgadas que las hojas maduras. En el sitio 1 las láminas de hojas maduras alcanzaron en promedio 10,6 cm de largo [ámbito: (2,4-) 5,3 - 18,7cm] y 4,4cm de ancho [ámbito: (1,1-) 2,2 - 7,7cm] (n=22). Además, en promedio se desarrollaron 20 hojas por planta [ámbito: (8-) 13 - 38] a lo largo de su ciclo anual (n=22); Fig. 2B). A medida que las plantas crecen, especialmente hasta producir las primeras inflorescencias, las hojas inferiores se secan y las de la parte media del tallo aparecen dañadas con manchas grises desde los bordes, pero no desarrollan lóbulos. En matorrales bajos y abiertos expuestos al sol (sitios 2 y 3) se observó que las hojas maduras de la parte superior de las plantas desarrollaron lóbulos laterales profundos, mientras en el sitio 1 con abundante sombra lateral muy pocas hojas desarrollaron uno o más lóbulos pequeños (Fig. 2C, F).

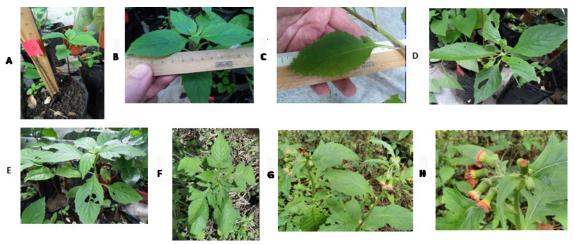


Fig. 2. Desarrollo de *Crassocephalum crepidioides* (Asteraceae). A: planta juvenil todavía con cotiledones cerca de la base del tallo; B: desarrollo de hojas en una planta sana (escala en cm); C: hoja con un solo lóbulo basal (escala en cm); D: planta moderadamente dañada por herbivoría; E: planta severamente dañada por herbivoría; F: planta con hojas superiores profundamente lobuladas, en matorral abierto y soleado; G: hábito de dos plantas maduras con inflorescencias nutantes; H: detalle de capítulos con flores en antesis y algunos botones florales. (Fotos de COM).

En el sitio 1 el 68% de las plantas sobrevivientes iniciaron la floración en agosto y septiembre, mientras el 32% restante inició la floración después, entre octubre y noviembre (muy raro en diciembre). Vale anotar que los botones florales con frecuencia son erectos, pero casi todos los capítulos maduros son nutantes (inclinados hacia abajo, Fig. 2G, H). En ca. 75% de las plantas observadas la floración y fructificación abarcaron un período desde agosto hasta diciembre; solo en pocos casos se observó floración todavía en enero. La floración se inició generalmente en plantas de 3 o 4 meses de edad (ca. 25%), pero la planta No. 8 del sitio 1 desarrolló 5 botones de capítulos en julio con dos meses de edad. Otras plantas (ca. 50%) florecieron con 5 o 6 meses de edad. A mediados de diciembre algunas plantas mantuvieron un desarrollo comparativamente raquítico, muy por debajo del promedio; en general con menos de 30cm de altura y hojas más pequeñas y

menos numerosas. En total, 36% de las plantas del sitio 1 murieron antes de haber completado el ciclo de vida, en la mayoría de casos por herbivoría.

El 50% de todas las plantas observadas florecieron solamente en la parte apical del tallo principal; es decir, no desarrollaron ramas laterales, mientras las de mayor crecimiento desarrollaron entre 2 y 5 ramas floríferas laterales. La herbivoría afectó más de 80% de todas las plantas y 100% de los órganos del vástago (Fig. 2D, E), quedando las hojas en algunos casos reducidas solo al pecíolo (por ej. 9 de 18 hojas en la planta No. 5 del sitio 1); sin embargo, la época de desarrollo de botones florales fue la más vulnerable a herbívoros, con hasta 50% de la biomasa de ciertas inflorescencias completamente devorada por insectos. No fue posible identificar las especies de organismos herbívoros, pero en las plantas afectadas aparecieron algunos áfidos, otros chupadores de savia fijos en partes apicales de tallos, saltamontes y larvas de algunas mariposas.

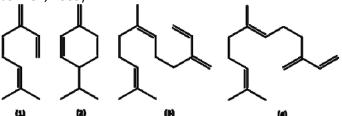
El número total de capítulos varió en plantas sanas entre 25 y 69; sin embargo, en plantas severamente dañadas por herbivoría o en plantas de crecimiento raquítico se contaron solo 1 a 5 capítulos; en casos raros no se desarrolló ninguno o todos los botones de capítulos fueron devorados por herbívoros. En noviembre y diciembre se produjo la máxima floración y fructificación, especialmente en los dos sitios de matorrales (Fig. 2H); allí 60% de las plantas mostraron a inicios de diciembre tanto flores en antesis como frutos maduros, además de pocos botones florales. En esa época gran número de frutos ya se habían desprendido de las infrutescencias, lo que fue evidente por la presencia de capítulos vacíos (receptáculos secos todavía con brácteas, pero sin flores ni frutos).

DISCUSIÓN

Los resultados han mostrado que los aceites esenciales de $\it C.$ crepidioides están constituidos principalmente por terpenos. El mirceno y el $\it \beta$ -felandreno (Fig. 3) son los monoterpenos que se encuentran en mayor cantidad en el aceite de flores procedente de SRMO. Estos resultados concuerdan con los obtenidos previamente en aceites de flores recolectadas en India (Joshi, 2011) y Vietnam (Hung et al., 2019), pero en el material de SRMO de Costa Rica la concentración de ambos constituyentes es muy alta, y representa el 89% de los constituyentes totales del aceite.

También en el aceite esencial de hojas los constituyentes mayoritarios son mirceno y β -felandreno, igual que en un estudio realizado con material de Vietnam (Hung et al., 2019); sin embargo, existe una marcada diferencia en el aceite del material de Camerún, donde el β -felandreno parece ser sustituido por limoneno y este último es el componente mayoritario en los aceites esenciales de las muestras de Yaundé (Zollo et al., 2000). En un estudio de las hojas de material de Guangzhou, China (Wang et al., 2014), se indica la presencia de mirceno y α -pineno como compuestos principales del aceite, pero el estudio es poco fiable porque para la identificación de los compuestos no se utilizaron índices de retención y el orden de elución de muchos de los compuestos es incorrecto. Así mismo, un informe de la composición de aceites esenciales de material de Akure, Nigeria (Owokotomo et al., 2012), muestra datos erróneos.

En nuestro análisis, el componente mayoritario del aceite esencial de tallos fue mirceno, igual que en el estudio de material de Vietnam (Hung et al., 2019), acompañado por cantidades menores de α -copaeno, α -pineno, α -humuleno, β -felandreno y (E)-cariofileno. En términos generales nuestro estudio coincide cualitativamente con los resultados de Vietnam.


El aceite esencial obtenido de las raíces registró los sesquiterpenos acíclicos (E)- β -farneseno y (Z)- β -farneseno (Fig. 3) como compuestos mayoritarios en ambas localidades costarricenses (SRMO y MMO). El aceite esencial obtenido de material recolectado en Ghats Occidentales (India) (Joshi, 2014) concuerda con el compuesto mayoritario de nuestro material, pero no se indica la presencia del isómero (Z)- β -farneseno, que sí está presente como el segundo compuesto principal

en las muestras de Costa Rica. No obstante, hay coincidencia entre ambos estudios en la presencia de otros componentes menores, como (E)-cariofileno y β -chamigreno. El (E)- β -farneseno se ha encontrado previamente en gran cantidad en *Hemizygia petiolata* Ashby de Sudáfrica (Bruce et al., 2005) y en H. bracteosa (Benth.) Briq. (Lamiaceae) de Benín (Kpoviessi et al., 2016). Una diferencia interesante es la presencia, en las muestras de SRMO, de 11 farnesanos en cantidades diversas, representando un total de 61,9% del total del aceite, mientras que en las muestras de MMO se identificaron en el aceite esencial de raíces solamente seis farnesanos, sumando en total 45,6%.

Los terpenos y terpenoides sintetizados por plantas cumplen una función importante en las interacciones con insectos. Es interesante notar el hecho de que el sesquiterpeno acíclico (E)- β -farneseno, que solamente se encuentra en gran cantidad en el aceite esencial de raíces (incluida la base rastrera y curvada del tallo), tiene función como feromona de alarma contra muchas especies de áfidos (pulgones), que causa que otros áfidos cercanos dejen de alimentarse y se dispersen (Beale et al., 2006). Los áfidos se encuentran entre las plagas de insectos más destructivas en campos agrícolas, especialmente en climas templados. Además, el (E)- β -farneseno también funciona como una kairomona para la atracción de depredadores de plagas de insectos (Al Abassi et al., 2000) y mejora el comportamiento de búsqueda de alimento por los parasitoides (Foster et al., 2005). La presencia de áfidos y otros insectos chupadores de savia en algunas de las plantas de *Crassocephalum crepidioides* observadas en el presente estudio podría estar relacionada con la concentración de (E)- β -farneseno registrada en raíces.

Un estudio efectuado con aceites esenciales de material (aparentemente planta entera) recolectado en los Himalayas Occidentales, India (Thakur, 2019), concuerda con el nuestro en que tanto el mirceno como el β -felandreno son los compuestos principales, acompañados por una pequeña cantidad de α -pineno. El mirceno (Fig. 3) es un monoterpeno insaturado ampliamente distribuido en aceites esenciales de diversas especies de plantas, como *Myrcia cuprea* (O. Berg) Kiaersk., Myrtaceae (Zoghbi et al., 2003), *Clausena dentata* (Willd.) M. Roem., Rutaceae (Trung et al., 2014), algunas variedades de *Humulus lupulus* L., Cannabaceae (Poleć et al., 2020) y un quimiotipo de *Lippia alba* (Mill.) N.E. Brown, Verbenaceae (Montero-Villegas et al., 2018). El mirceno posee propiedades sedantes y ansiolíticas (Rao et al., 1990), antiinflamatorias (Rufino et al., 2015), así como antioxidantes y citoprotectoras (Xanthis et al., 2021); también tiene propiedades antienvejecimiento (Surendran et al., 2021) y actividad anti-invasiva en una línea de células epiteliales humanas de cáncer de mama, MDA-MB-231 (Lee et al., 2015). Este compuesto es un valioso material renovable para la síntesis industrialmente sustentable de gran número de productos de la química fina, que tienen alto valor agregado y son utilizados en múltiples aplicaciones (Behr & Johnen, 2009).

Fig. 3. Terpenos principales de los aceites esenciales de *Crassocephalum crepidioides*: (1) mirceno; (2) β-felandreno; (3) (Z)-β-farneseno, (4) (E)-β-farneseno.

El β-felandreno (Fig. 3) es un monoterpeno cíclico insaturado perteneciente al grupo de los *p*-mentadienos, que forma parte de aceites esenciales obtenidos de diversas especies vegetales, como *Petroselinum crispum* (Mill.) Fuss, Apiaceae (Zhang et al., 2006), *Canarium schweinfurthii*

Engl., Burseraceae (Nagawa et al., 2015), *Sideritis cypria* Post, Lamiaceae (Lytra et al., 2020) y las asteráceas *Perymenium grande* Hemsl. var. *nelsonii* (B.L. Rob. & Greenm.) J.J. Fay (Cicció & Chaverri, 2012), *Santolina chamaecyparissus* L. (Demirci et al., 2000), *S. corsica* Jord. & Fourr. (Liu et al., 2007), *S. rosmarinifolia* L. ssp. *rosmarinifolia* (Palá-Paúl et al., 2001) y *Smallanthus quichensis* (J.M. Coult.) H. Rob. (Chaverri & Cicció, 2015). El β-felandreno posee propiedades antimicóticas y antibacterianas (Touma et al., 2020).

Es importante notar que en ambos sitios de recolecta (SRMO y MMO) los compuestos principales de los aceites esenciales fueron, en términos generales, los mismos. Aunque *Crassocephalum crepidioides* tiene polinización cruzada y reproducción sexual, al comparar nuestros resultados con los de India y Vietnam (Joshi, 2011; 2014; Thakur et al., 2019; Hung et al., 2019) parece que los aceites esenciales de esta especie son notablemente homogéneos. Una excepción es el estudio de Benín, donde el β -felandreno es sustituido por limoneno (Zollo et al., 2000). No obstante, de los 231 compuestos identificados en total en este estudio, solamente 76 se hallaron en común en los aceites esenciales de las dos localidades de Costa Rica, lo que indica que esta especie exhibe una gran plasticidad en la biosíntesis de compuestos detectables en cantidades menores y a nivel de trazas.

Nuestros datos muestran que dos tercios de las plantas de *Crassocephalum crepidioides* observadas no fueron estrictamente anuales, contrario a lo indicado en la literatura (Lisowski, 1991), sino que completaron su ciclo de vida en cuatro a seis meses. Numerosas plantas maduras en plena floración tenían el tallo tan suave y tan débil, que no podían mantenerse erectas y estaban apoyadas en la vegetación vecina; esto parece indicar que esta especie no invierte biomasa ni energía en tejidos rígidos de soporte, sino que después de tres a cinco meses de crecimiento vegetativo, la mayoría de plantas empiezan cuanto antes a producir estructuras reproductivas. Con base en información y mediciones de especímenes de herbarios, el Manual de Plantas de Costa Rica (Rodríguez, 2020) indica que estas hierbas miden 0,3 a 1,3 m de altura y las láminas foliares 1,5 a 19(-25) cm de largo × 0,4 a 10 cm de ancho. Estos valores están mayormente dentro de los ámbitos medidos en nuestra investigación, con excepción de la cifra más baja de largo y ancho de hojas, lo que podría deberse a un sesgo de herbario: al ser las hojas relativamente carnosas, pierden abundante agua y se reduce su área en el proceso de secado.

Entre octubre y diciembre, al acercarse el final del ciclo de vida de la mayoría de plantas, se determinó que ya no tenía sentido seguir haciendo mediciones tales como longitud de tallos, longitud y anchura de hojas, dado el gran daño provocado por herbívoros y la evidente reducción o suspensión del crecimiento vegetativo para concentrar la energía en producir capítulos, cipselas y semillas. Se sabe que las hierbas anuales mueren después de la maduración de las semillas según un programa interno de desarrollo (Sitte et al., 1994). Además de cortes en tallos y hojas y reducción de área foliar por herbivoría, en láminas foliares se observaron puntos y manchas de color gris o amarillento, probablemente por la acción de insectos, pero no se descartan otros agentes, tales como hongos o virus. En África tropical Denton (2004) cita las siguientes plagas de C. crepidioides: los hongos Aecidium crassocephali y Cercospora sp.; las larvas de lepidópteros Psara pallidalis, Lobesia aedopai, Nyctemera perspicua y Sylepta derogata; los coleópteros Lagria villosa y Chrysolagria sp.; la langosta ortóptera Zonocerus variegatus, y afidoideos o pulgones, como Aphis spiraecola. Chen et al. (2008) identificaron molecularmente los geminivirus que provocan amarilleamiento de venas foliares en C. crepidioides, mientras en India el "virus de enación de Ageratum" (Ageratum enation virus) se halló infectando plantas de esta especie (Kumar et al., 2011).

Como *C. crepidioides* posee hojas con textura suave, con frecuencia fueron evidentes también rupturas en láminas foliares debidas a caída de ramitas, frutos pequeños y otras partes desprendidas de plantas grandes de los alrededores. Así, es probable que cuanto más diverso y

complejo es el ambiente donde crecen estas plantas, menos probable será que sigan propagándose masivamente como invasoras. Algunos estudios indican que la diversidad natural de una región es una de las mejores defensas contra especies vegetales invasoras (Elton, 1958; Morales, 2020). Sin embargo, este punto de vista ha sido ampliamente cuestionado por algunos autores (Levine & D'Antonio, 1999), que han hallado evidencias de lo contrario o ninguna tendencia clara. Aparentemente no solo la diversidad, sino también algunos factores ambientales intervienen al mismo tiempo en el éxito o el fracaso de una especie invasora. Lo que sí parece indudable es que las especies herbáceas heliófilas tienen muy pocas posibilidades de invadir exitosamente los bosques neotropicales más complejos, que muestran un dosel muy cerrado y varios estratos verticales. Al contrario, en bosques alterados y en ambientes más abiertos y soleados, como las sabanas, hierbas como *C. crepidioides* pueden hallar hábitats y nichos apropiados. Cuando hemos visto esta especie en áreas protegidas, siempre ha sido junto a caminos de ingreso y en otros sitios abiertos a orillas de bosques naturales.

En el sitio 1 (invernadero) murieron el 36% de las plantas antes de haber completado el ciclo de vida y sin florecer. Estas plantas estaban a la sombra de otras herbáceas más grandes, de crecimiento más rápido, como Achyranthes aspera L. (Amaranthaceae), Aristolochia grandiflora Sw. (Aristolochiaceae), Canna sp. (Cannaceae), Heliconia tortuosa Griggs (Heliconiaceae) y Neurolaena lobata (L.) Cass. (Asteraceae), o estaban en la base de plantas leñosas, con las que no pudieron competir, como Aphelandra leonardii McDade (Acanthaceae), Cecropia obtusifolia Bertol. (Cecropiaceae), Cupania glabra Sw. (Sapindaceae), Licaria triandra (Sw.) Kosterm. (Lauraceae) y Lonchocarpus oliganthus F.J. Herm. (Fabaceae). Es probable una combinación de sombra, competencia de plantas más grandes y herbivoría para explicar el menor desarrollo de ciertas plantas. Además, estos tres factores podrían explicar la menor altura promedio (56 cm) de las plantas medidas en el sitio 1, comparadas con las de dos sitios de matorrales abiertos y más soleados (111 cm). Aunque la última medición de altura en el sitio 1 se hizo a finales de septiembre y la medida de altura total de los dos sitios de matorrales se hizo a inicios de diciembre, en ambos casos se trata aproximadamente de un parámetro del máximo desarrollo vegetativo, porque a partir de octubre predominó el desarrollo de capítulos y frutos. Nuestras observaciones indican que el mayor desarrollo lo alcanzan las plantas que crecen en sitios abiertos, soleados, con suelo húmedo durante todo el período de crecimiento vegetativo, con poca o ninguna competencia de plantas más grandes. Un rasgo distintivo de plantas que crecen en áreas abiertas y soleadas es que las hojas superiores se vuelven profundamente lobuladas, especialmente en el tercio proximal de la lámina, contrario a lo observado en el sitio 1 con abundante sombra lateral. Esto parece indicar que una mayor radiación solar estimula el desarrollo de lóbulos laterales que aumentan el área foliar; de este modo las hojas se vuelven ± pinnatisectas (Fig. 2 F, H). Un modelo experimental podría diseñarse con control y medición de intensidad lumínica y área foliar en varios ambientes donde crece esta especie o bien en condiciones de laboratorio.

En varios sitios observamos numerosas plantas de *Crassocephalum crepidioides* en la estación lluviosa de un año, pero en los dos o tres años siguientes allí no se hallaron plantas de esta especie o crecieron muy pocas. En el marco de este estudio no fue posible explicar este fenómeno, que además impidió hacer un muestreo de más de un año en cada sitio estudiado. Dos posibles explicaciones serían que las semillas que caen junto a las plantas progenitoras no germinan por ser subdesarrolladas o porque existe algún factor de rechazo por alelopatía; así, solo germinarían las que son transportadas por viento y otros factores a ciertas distancias. Estas hipótesis podrían someterse a experimentación en el futuro.

Después de analizar la germinación de las semillas, Chen et al. (2009) argumentaron que la capacidad de dispersión de semillas de *C. crepidioides* es limitada y por eso esta especie tendría un potencial invasor moderado. Estas observaciones válidas en China no parecen igualmente válidas

en Costa Rica y otros países neotropicales, donde C. crepidioides apareció en la década de 1990 como una hierba invasora muy agresiva. Sin embargo, observamos daños debidos a herbivoría en más del 80% de las plantas, abarcando el cien por ciento de las estructuras aéreas. Algunas plantas llegaron a desaparecer por completo y el desarrollo de otras (> 50%) se redujo por herbivoría y competencia de plantas más grandes. En consecuencia, una fase invasora inicial parece haberse superado y esta especie ahora tiende a integrarse en la flora moderna de Costa Rica (Morales, 2020). Allí donde han colonizado, las plantas de esta especie pronto se convierten en una buena fuente de alimento para numerosos herbívoros pequeños, lo que podría favorecer las cadenas y redes tróficas locales, especialmente en áreas degradadas y florísticamente empobrecidas por actividades humanas. Un estudio reveló actividad antimalárica, antituberculosa y antifúngica de tres compuestos de Geotrichum sp., un hongo endófito de Crassocephalum crepidioides (Kongsaeree et al., 2003). Esto revela que hasta las especies de plantas consideradas invasoras son útiles, incluso de modos inesperados. Además, el concepto antropocéntrico tradicional de malezas o "malas hierbas" [inglés "weeds"] debería erradicarse por ser negativamente sesgado contra elementos bióticos naturales. En su lugar, podría hablarse de plantas acompañantes (Fernández-Quintanilla & Dorado, 2007) o plantas coexistentes (Chandrasena, 2014), para así aceptar y reconocer la existencia de una mayor diversidad biológica en campos de cultivo y otras áreas antrópicas. También podemos llamarlas arvenses, el término latino para plantas (no cultivadas) de campos de labranza.

Aunque esta especie se reconoce como anual, 2/3 de las plantas observadas completaron su ciclo de vida en 4 a 6 meses y debido a herbivoría y otros factores ambientales su propagación se ha reducido notablemente.

AGRADECIMIENTOS

A la Vicerrectoría de Investigación de la Universidad de Costa Rica que financió parte del estudio con el proyecto 809-B5-A48. Agradecemos también a los revisores anónimos por sus valiosos comentarios, sugerencias y correcciones que enriquecieron el presente trabajo.

ÉTICA, CONFLICTO DE INTERESES Y DECLARACIÓN DE FINANCIAMIENTO

Declaramos haber cumplido con todos los requisitos éticos y legales pertinentes, tanto durante el estudio como en la preparación de este documento; que no hay conflictos de interés de ningún tipo, y que todas las fuentes financieras se detallan plena y claramente en la sección de agradecimientos. Asimismo, estamos de acuerdo con la versión editada final de esta publicación. El respectivo documento legal firmado se encuentra en los archivos de la revista.

La declaración de la contribución de cada autor al manuscrito fue la siguiente: C. C. y J. F. C. realizaron todo el trabajo químico (2/3 del total); C. O. M. hizo el trabajo fenológico y de interacciones bióticas (1/3 del total).

REFERENCIAS

- Adams, R.P. (2007). *Identification of Essential Oil Components by Gas Chromatography/ Quadrupole Mass Spectrometry*, (4a. ed.). Allured Publishing Corporation.
- Adjatin, A., Dansi, A., Badoussi, E., Sanoussi, A. F., Dansi, M., Azokpota, P., Ahissou, H., Akouegninou, A., Akpagana, K., & Sanni, A. (2013). Proximate, mineral and vitamin C composition of vegetable Gbolo [Crassocephalum rubens (Juss. ex Jacq.) S. Moore and C. crepidioides (Benth.) S. Moore] in Benin. International Journal of Biological and Chemical Sciences, 7(1), 319-331. http://dx.doi.org/10. 4314/ijbcs.v7iLi.27
- Al Abassi, S., Birkett, M.A., Pettersson, J., Pickett, J.A., Wadhams, L.J., & Woodcock, C.M. (2000). Response of the sevenspot ladybird to an aphid alarm pheromone inhibitor is mediated by paired olfactory cells. *Journal of Chemical Ecology*, 26(7), 1765-1771. http://dx.doi.org/10.1023/A:1005555300476
- Aniya, Y., Koyama, T., Miyagi, C., Miyahira, M., Inomata, C., Kinoshita, S., & Ichiba, T. (2005). Free radical scavenging and hepatoprotective actions of the medicinal herb, *Crassocephalum crepidioides* from the Okinawa Islands. *Biological and Pharmaceutical Bulletin*, 28(1), 19-23. https://doi.org/10.1248/bpb.28.19
- Arawande, J.O., Amoo, I.A., & Lajide, L. (2012). Phytochemical and antioxidant characterization of fireweed (*Crassocephalum crepidioides*) and African lettuce (*Lactuca taraxacifolia*). Journal of Applied Technology in Environmental Sanitation, 2(4), 191-196.
- Asada, Y., Shiraishi, M., Takeuchi, T., Osawa, Y., & Furuya, T. (1985). Pyrrolizidine alkaloids from *Crassocephalum crepidioides*. *Planta Medica*, *51*(6), 539-540. https://doi.org/10.1055/s-2007-969597
- Bahar, E., Akter, K.M., Lee, H.Y., Rashid, H.O., Choi, M.K., Bhattarai, K.R., Hossain, M.M.M., Ara, J., Mazumder, K., Raihan, O., Chae, H.J., & Yoon, H. (2017). β-Cell protection and antidiabetic activities of *Crassocephalum crepidioides* (Asteraceae) Benth. S. Moore extract against alloxan-induced oxidative stress via regulation of apoptosis and reactive oxygen species (ROS). *BMC Complementary and Alternative Medicine*, 17, 179. https://doi.org/10.1186/s12906-017-1697-0
- Beale, M.H., Bierkett, M.A., Bruce, T.J.A., Chamberlain, K., Field, L.M., Huttly, A.K., Martin, J.L., Parker, R., Phillips, A.L., Pickett, J.A., Prosser, I.M., Shewry, P., Smart, L.E., Wadhams, L.J., Woodcock, C.M., & Zhang, Y. (2006). Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. *Proceedings of the National Academy of Sciences*, 103(27), 10509-105013. https://doi.org/10.1073/pnas.0603998103
- Behr, A., & Johnen, L. (2009). Myrcene as a natural base chemical in sustainable chemistry: a critical review. *Chemistry-Sustainability-Energy-Materials* (*ChemSusChem*), 2, 1072-1095. https://doi.org/10.1002/cssc.200900186
- Belcher, R.O. (1955). The typification of Crassocephalum Moench and Gynura Cass. Kew Bulletin, 10(3), 455-465.
- Bruce, T.J.A., Birkett, M.A., Blande, J., Hooper, A.M., Martin, J.L., Khambay, B., Prosser, I., Smart, E., & Wadhams, L.J. (2005). Response of economically important aphids to components of *Hemizygia petiolata* essential oil. *Pest Management Science*, 61(11), 1115-1121. https://doi.org/10.1002/ps.1102
- Chandrasena, N. (2014). Living with weeds A new paradigm. *Indian Journal of Weed Science*, 46(1), 96-110. http://isws.org.in/IJWSn/File/2014_46_Issue-1_96-110.pdf
- Chaverri, C., & Cicció, J.F. (2015). Composition of the essential oil from leaves of *Smallanthus quichensis* (Asteraceae) from Costa Rica. *Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas*. *14*(5), 355-363. https://redalyc.org/articulo.oa?id=85641105002
- Chen, G., Guo, S., & Huang, Q. (2009). Invasiveness evaluation of fireweed (*Crassocephalum crepidioides*) based on its seed germination features. *Weed Biology and Management*, *9*(2), 123-128.
- Chen, J., Li, F., Li, Y., Yi, S., Guo, J., & Chen, H. (2008). Molecular identification of geminiviruses inducing vein yellowing in *Crassocephalum crepidioides*. *Journal of Yunnan Agricultural University*, *23*(1), 29-32.

- Cicció, J.F., & Chaverri, C. (2012). Chemical composition of the leaf and branch oils of *Perymenium grande* Hemsl. var. *nelsonii* (Robins. & Greenm.) Fay (Asteraceae-Heliantheae) from Costa Rica. *Records of Natural Products*, 6(4), 371-375. https://www.acgpubs.org/RNP/2012/Volume%206/Issue%201/52-RNP-1108-736.pdf
- Dairo, F.A.S., & Adanlawo, I.G. (2007). Nutritional Quality of *Crassocephalum crepidioides* and *Senecio biafrae*. *Pakistan Journal of Nutrition*, 6(1), 35-39. https://doi.org/10.3923/pjn.2007.35.39
- Denton, O.A. (2004). Crassocephalum crepidioides (Benth.) S. Moore. In G.J.H. Grubben & O.A. Denton (Eds.), Plant Resources of Tropical Africa 2: Vegetables/Légumes (pp. 226-228). PROTA Foundation.
- Demirci, B., Özek, T., & Baser, K. H. C. (2000). Chemical composition of *Santolina chamaecyparissus* L. essential oil. *Journal of Essential Oil Research*, 12(5), 625-627. https://doi.org/10.1080/10412905.2000.9712173
- Elton, C. S. (1958). The ecology of invasions by animals and plants. Methuen.
- Fernández-Quintanilla, C., & Dorado, J. (2007). Daños y beneficios causados por las malas hierbas. *Phytoma*, 193, 12-16. https://bit.ly/3PIFD7M
- Fidèle, N., Rodrigue, T. E., Christian, B., Romain, K. A. D., & Emmanuel, T. (2019). Diuretic activity of the aqueous extract leaves of *Crassocephalum crepidioides* (Asteraceae) in rats. *International Journal of Current Microbiology and Applied Sciences*, 8(4), 2649-2667. https://doi.org/10.20546/ijcmas.2019.804.309
- Foster, S.P., Denholm, I., Thompson, R., Poppy, G.M., & Powell, W. (2005). Reduced response on insecticide-resistant aphids and attraction of parasitoids to aphid alarm pheromone; a potential fitness trade-off. *Bulletin of Entomological Research*, 95(1), 37-46. https://doi.org/10.1079/BER2004336
- Funk, V.A., Susanna, A., Stuessy, T.F., & Robinson, H. (2009). Chap. 11. Classification of Compositae. In V.A. Funk, A. Susanna, T.F. Stuessy & R.J. Bayer (Eds.), Systematics, evolution, and biogeography of Compositae (pp. 171-189). IAPT.
- Hung, N.H., Satyal, P., Dai, D, N., Tai, T.A., Huong, L.T., Chuong, N.T.H., Hieu, H.V., Tuan, P.A., Vuong, P.V., & Setzer, W.N. (2019). Chemical compositions of *Crassocephalum crepidioides* essential oils and larvicidal activities against *Aedes aegypti, Aedes albopictus*, and *Culex quinquefasciatus*. *Natural Product Communications*, 14(6), 1-5. https://doi.org/10.1177/1934578X19850033
- Instituto Meteorológico Nacional (IMN). (2021). Clima de Costa Rica y variabilidad climática: Valle Central. https://bit.ly/3IYDouJ
- Joshi, R.K. (2011). Terpene composition of *Crassocephalum crepidioides* from Western Ghats region of India. *International Journal of Natural Products Research*, 1(2), 19-22.
- Joshi, R.K. (2014). Study on essential oil composition of the roots of *Crassocephalum crepidioides* (Benth.) S. Moore. Journal of the Chilean Chemical Society, 59(1), 2363-2365. https://doi.org/10.4067/S0717-97072014000100025
- Kongsaeree, P., Prabpai, S., Sriubolmas, N., Vongvein, C., & Wiyakrutta, S. (2003). Antimalarial dihydroisocoumarins produced by *Geotrichum* sp., an endophytic fungus of *Crassocephalum crepidioides*. *Journal of Natural Products*, 66(5), 709-711. https://doi.org/10.1021/np0205598
- Kpoviessi, S., Agbani, P., Gbaguidi, F., Gbénou, J., Sinsin, B.A., Accrombessi, G., Bero, J., Moudachirou, M., & Quetin-Leclercq, J. (2016). Seasonal variations of volatile constituents of *Hemizygia bracteosa* (Benth.) Briq. aerial parts from Benin. *Comptes Rendus Chimie*, 19(7), 890-894. http://dx.doi.org/10.1016/j.crci.2016.03.013
- Kumar, Y., Hallan, V., & Zaidi, A.A. (2011). First report of Ageratum enation virus infecting Crassocephalum crepidioides (Benth.) S. Moore and Ageratum conyzoides L. in India. Journal of General Plant Pathology, 77(3), 214-216. https://doi.org/10.1007/s10327-011-0308-z

- Lee, J.-H., Lee, K., Lee, D.H., Shin, S.Y., Yong, Y., & Lee, Y.H. (2015). Anti-invasive effect of b-myrcene, a component of the essential oil from *Pinus koraiensis* cones, in metastatic MDA-MB-231 human breast cancer cells. *Journal of the Korean Society for Applied Biological Chemistry*, *58*(4), 563-569. https://doi.org/10.1007/s13765-015-0081-3
- Levine, J.M., & D'Antonio, C.M. (1999). Revisited: A review of evidence linking diversity and invasibility. *Oikos*, *87*(1), 15-26. https://doi.org/10.2307/3546992
- Lisowski, S. (1991). Les Asteraceae dans la flore d'Afrique Centrale. Vol. 2. Fragmenta Floristica et Geobotanica, 36(1, Suppl. 1), 251-627.
- Liu, K., Rossi, P-G., Ferrari, B., Berti, I., Casanova, J., & Tomi, F. (2007). Composition, irregular terpenoids, chemical variability and antibacterial activity of the essential oil from *Santolina corsica* Jordan et Fourr. *Phytochemistry*, 68(12), 1698-1705. https://doi.org/10.1016/j.phytochem.2007.04.027
- Lytra, K., Tomou, E.-M., Chrysargyris, A., Drouza, C., Skaltza, H., & Tzortzakys, N. (2020). Traditionally used *Sideritis cypria*Post.: Phytochemistry, nutritional content, bioactive compounds of cultivated populations. *Frontiers in*Pharmacology, 11, 650. https://doi.org/10.3389/fphar.2020.00650
- Montero-Villegas, S., Crespo, R., Rodenak-Kladniew, B., Castro, M.A., Galle, M., Cicció, J.F., García de Bravo, M., & Polo, M. (2018). Cytotoxic effects of essential oils from four *Lippia alba* chemotypes in human liver and lung cancer cell lines. *Journal of Essential Oil Research*, 30, 167–181. https://doi.org/10.1080/10412905.2018.1431966 167–181
- Morales, C.O. (2020). Origen, historia natural y usos de las plantas introducidas en Costa Rica. *Cuadernos de Investigación UNED*, 12(2), e3098. https://doi.org/10.22458/urj.v12i2.3098
- Nagawa, C., Böhmdorfer, S., & Rosenau, T. (2015). Chemical composition and anti-termitic activity of essential oil from *Canarium schweinfurthii* Engl. *Industrial Crops and Products*, *71*, 75-79. http://dx.doi.org/10.1016/j.indcrop.2015.03.078
- Newman, M.G., Cohen, L.B., Opris, M., Nanau, R., & Jeong, H. (2015). Hepatotoxicity of pyrrolizidine alkaloids. *Journal of Pharmacy and Pharmaceutical Sciences*, 18(4), 825-843. https://doi.org/10.18433/j3bg7j
- Nordenstam, B. (2007). *Crassocephalum crepidioides* (Asteraceae-Senecioneae) in the Dominican Republic. *Moscosoa*, 15, 61-64.
- Owokotomo, I.A., Ekundayo, O., Oladosu, I.A. & Aboaba, S. (2011). Analysis of the essential oils of leaves and stems of *Crassocephalum crepidioides* growing in South Western Nigeria. *International Journal of Chemistry*, *4*(2), 34-37. https://doi.org/10.5539/ijc.v4n2p34
- Palá-Paúl, J., Pérez-Alonso, M.J., Velasco-Negueruela, A., Palá-Paúl, R., Sanz, J., & Conejero, F. (2001). Seasonal variation in chemical constituents of *Santolina rosmarinifolia* L. ssp. *rosmarinifolia*. *Biochemical Systematics and Ecology*, 29(7), 663-672. https://doi.org/10.1016/S0305-1978(01)00032-1
- Panero, J.L., & Crozier, B.S. (2012). Asteraceae. Sunflowers, daisies. http://tolweb.org/Asteraceae/20780/2012.01.27
- Poleć, K., Broniatowski, M., Wydro, P., & Hac-Wydro, K. (2020). The impact of β-myrcene -the main component of the hop essential oil- on the lipid films. *Journal of Molecular Liquids*, 308, 113028. https://doi.org/10.1016/j.molliq.2020.113028
- Randall, R. P. (2012). A Global Compendium of Weeds (2nd ed). Shannon Books.
- Rao, V.S., Menezes, A.M., & Viana, G.S. (1990). Effect of myrcene on nociception in mice. *Journal of Pharmacy and Pharmacology*, *42*(12), 877-878. https://doi.org/10.1111/j.2042-7158.1990.tb07046.x
- Rodríguez, A. (2020). Asteraceae. In B.E. Hammel, M.H. Grayum, C. Herrera & N. Zamora (Eds.), *Manual de Plantas de Costa Rica* (vol. 4, parte 1, pp. 516–878). Missouri Bot. Garden Press.

- Royal Botanic Gardens Kew. (s.f.) Crassocephalum Moench. Plants of the World Online. https://bit.ly/3zogKc5
- Rozhon, W., Kammermeier, L., Schramm, S., Towfique, N., Adedeji, N.A., Ajayi, S.A., & Poppenberger, B. (2017). Quantification of the pyrrolizidine alkaloid jacobine in *Crassocephalum crepidioides* by cation exchange high-performance liquid chromatography. *Phytochemical Analysis*, 29(1), 48-58. https://doi.org/10.1002/pca.2713
- Rufino, A.T., Ribeiro, M., Sousa, C., Judas, F., Salgueiro, L., Cavaleiro, C., & Mendes, A.F. (2015). Evaluation of the antiinflammatory, anti-catabolic and pro-anabolic effects of *E*-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. *European Journal of Pharmacology, 750,* 141-150. https://doi.org/10.1016/j.ejphar.2015.01.018
- Schramm, S., Rozhon, W., Adedeji-Batmus, A.N., Liang, Y., Nayem, S., Winkelmann, T., & Poppenberger, B. (2021). The orphan crop *Crassocephalum crepidioides* accumulates the pyrrolizidine alkaloid jacobine in response to nitrogen starvation. *Frontiers in Plant Science*, 12, 702985. https://doi.org/10.3389/fpls.2021.702985
- Sitte, P., Ziegler, H., Ehrendorfer, F., & Bresinsky, A. (1994). Strasburger. Tratado de Botánica (8th. Ed.) Editorial Omega.
- Stenhagen, E., Abrahamsson, S., & McLafferty, F.W. (1974). Registry of Mass Spectral Data. John Wiley & Sons.
- Surendran, S., Qassadi, F., Surendran, G., Lilley, D., & Heinrich, M. (2021). Myrcene What are the potential health benefits of this flavouring and aroma agent? *Frontiers in Nutrition*, *8*, 699666. https://doi.org/10.3389/fnut.2021.699666
- Swigar, A.A., & Silvertein, R.M. (1981). *Monoterpenes. Infrared, Mass, ¹N-NMR, and ¹³C-NMR Spectra, and Kováts Indices.*Aldrich Chemical Company Inc.
- Thakur, S., Koundal, R., Kumar, D., Maurya, A.K., Padwad, Y.S., Lal, B., & Agnihotri, V.K. (2019). Volatile composition and cytotoxic activity of aerial parts of *Crassocephalum crepidioides* growing in Western Himalaya, India. *Indian Journal of Pharmaceutical Sciences*, 81(1), 167-172. https://doi.org/10.4172/pharmaceutical-sciences.1000494
- The Plant List. (2010). A working list of all plant species. www.theplantlist.org
- Tomimori, K., Nakama, S., Kimura, R., Tamaki, K., Ishikawa, C., & Mori, N. (2012). Antitumor activity and macrophage nitric oxide producing action of medicinal herb, *Crassocephalum crepidioides*. *BMC Complementary and Alternative Medicine*, 12, 78, 2012. http://www.biomedcentral.com/1472-6882/12/78
- Touma, J., Navarro, M., Sepúlveda, B., Pavon, A., Corsini, G., Fernández, K., Quezada C., Torres, A., Larrazabal-Fuentes, M. J., Paredes, A., Neira, I., Ferrando, M., Bruna, F., Venegas, A., & Bravo. J. (2020). The chemical compositions of essential oils derived from *Cryptocarya alba* and *Laurelia sempervirens* possess antioxidant, antibacterial and antitumoral activity potential., *Molecules*, 25, 5600. https://doi.org/10.3390/molecules25235600
- Trung, H.D., Thang, T.D., Ban, P.H., Hoi, T.M., Dai, D.N., & Ogunwande, I.A. (2014). Terpene constituents of the leaves of five Vietnamese species of *Clausena* (Rutaceae). *Natural Product Research*, 28(9), 622-630. https://doi.org/10.1080/14786419.2014.888555
- van den Dool, H., & Kratz, P.D. (1963). A generalization of the retention index including linear temperature programmed gas-liquid partition chromatography. *Journal of Chromatography A, 11,* 463-471. https://doi.org/10.1016/S0021-9673(01)80947-X
- Wallace, W.E. (dir.). 2019. Mass spectra (by NIST Mass Spec Data Center). In P.J. Linstrom & W.G. Mallard (Eds.), *Nits Chemistry WebBook: NIST Standard Reference Database Number 69.* National Institute of Standards and Technology. http://webbook.nist.gov.
- Wang, R., Zheng, Z., Wang, G., & Kong, X. (2014). Allelopatic potential and antifeeding activity of *Crassocephalum crepidioides* against native plants and *Spodoptera litura*. *Allelopathy Journal*, 33(2), 245-254.
- Xanthis, V., Fitsiou, E., Voulgaridou, G.-P., Bogadakis, A., Chlichlia, K., Galanis, A., & Pappa, A. (2021). Antioxidant and cytoprotective potential of the essential oil *Pistacia lentiscus* var. *chia* and its major components myrcene and α-pinene. *Antioxidants*, *10*, 127. https://doi.org/10.3390/antiox10010127

- Zhang, H., Chen, F., Wang, X., & Yao, H-Y. (2006). Evaluation of antioxidant activity of parsley (*Petroselinum crispum*) essential oil and identification of its antioxidant constituents. *Food Research International*, *39*(8), 833-839. https://doi.org/10.1016/j.foodres.2006.03.007
- Zoghbi, M. d. G.B., Andrade, E.H.A., Silva, M.H.L. d., Carreira, L.M.M., & Maia, J.G.S. (2003). Essential oils from three *Myrcia* species. *Flavour and Fragrance Journal*, *18*, 421-424. https://doi.org/10.1002/ffj.1242
- Zollo, P.H.A., Kuiate, J.R., Menut, C. & Bessiere, J.M. (2000). Aromatic plants of tropical Central Africa. XXXVI. Chemical composition of essential oils from seven Cameroonian *Crassocephalum* species. *Journal of Essential Oil Research*, 12(5), 533-536. https://doi.org/10.1080/10412905.2000.9712152